87 lines
2.1 KiB
Perl
87 lines
2.1 KiB
Perl
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
% ProbLog program describing a probabilistic graph
|
||
|
% (running example from ProbLog presentations)
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
|
||
|
:- use_module('../problog').
|
||
|
|
||
|
%%%%
|
||
|
% background knowledge
|
||
|
%%%%
|
||
|
% definition of acyclic path using list of visited nodes
|
||
|
path(X,Y) :- path(X,Y,[X],_).
|
||
|
|
||
|
path(X,X,A,A).
|
||
|
path(X,Y,A,R) :-
|
||
|
X\==Y,
|
||
|
edge(X,Z),
|
||
|
absent(Z,A),
|
||
|
path(Z,Y,[Z|A],R).
|
||
|
|
||
|
% using directed edges in both directions
|
||
|
edge(X,Y) :- dir_edge(Y,X).
|
||
|
edge(X,Y) :- dir_edge(X,Y).
|
||
|
|
||
|
% checking whether node hasn't been visited before
|
||
|
absent(_,[]).
|
||
|
absent(X,[Y|Z]):-X \= Y, absent(X,Z).
|
||
|
|
||
|
%%%%
|
||
|
% probabilistic facts
|
||
|
%%%%
|
||
|
0.9::dir_edge(1,2).
|
||
|
0.8::dir_edge(2,3).
|
||
|
0.6::dir_edge(3,4).
|
||
|
0.7::dir_edge(1,6).
|
||
|
0.5::dir_edge(2,6).
|
||
|
0.4::dir_edge(6,5).
|
||
|
0.7::dir_edge(5,3).
|
||
|
0.2::dir_edge(5,4).
|
||
|
|
||
|
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
% example queries about path(1,4)
|
||
|
%
|
||
|
%%% explanation probability (and facts involved)
|
||
|
% ?- problog_max(path(1,4),Prob,FactsUsed).
|
||
|
% FactsUsed = [dir_edge(1,2),dir_edge(2,3),dir_edge(3,4)],
|
||
|
% Prob = 0.432 ?
|
||
|
% yes
|
||
|
%%% success probability
|
||
|
% ?- problog_exact(path(1,4),Prob,Status).
|
||
|
% 8 proofs
|
||
|
% Prob = 0.53864,
|
||
|
% Status = ok ?
|
||
|
% yes
|
||
|
%%% lower bound using 4 best proofs
|
||
|
% ?- problog_kbest(path(1,4),4,Prob,Status).
|
||
|
% 4 proofs
|
||
|
% Prob = 0.517344,
|
||
|
% Status = ok ?
|
||
|
% yes
|
||
|
%%% approximation using monte carlo, to reach 95%-confidence interval width 0.01
|
||
|
% ?- problog_montecarlo(path(1,4),0.01,Prob).
|
||
|
% Prob = 0.537525 ?
|
||
|
% yes
|
||
|
%%% upper and lower bound using iterative deepening, final interval width 0.01
|
||
|
% ?- problog_delta(path(1,4),0.01,Bound_low,Bound_up,Status).
|
||
|
% Bound_low = 0.5354096,
|
||
|
% Bound_up = 0.53864,
|
||
|
% Status = ok ?
|
||
|
% yes
|
||
|
%%% upper and lower bound obtained cutting the sld tree at probability 0.1 for each branch
|
||
|
% ?- problog_threshold(path(1,4),0.1,Bound_low,Bound_up,Status).
|
||
|
% 4 proofs
|
||
|
% Bound_low = 0.517344,
|
||
|
% Bound_up = 0.563728,
|
||
|
% Status = ok ?
|
||
|
% yes
|
||
|
%%% lower bound obtained cutting the sld tree at probability 0.2 for each branch
|
||
|
% ?- problog_low(path(1,4),0.2,Bound_low,Status).
|
||
|
% 1 proofs
|
||
|
% Bound_low = 0.432,
|
||
|
% Status = ok ?
|
||
|
% yes
|
||
|
%
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|