bee
This commit is contained in:
parent
16015bd8e6
commit
b1b6afe801
@ -1,5 +1,5 @@
|
||||
PKG_LIBS=-Wl,-rpath=${YAP_LIBDIR} -Wl,-rpath=${YAP_DLLDIR} \
|
||||
-L${YAP_LIBDIR} -L${YAP_DLLDIR} -lreal -lYAP++ -lYap
|
||||
PKG_LIBS=${CMAKE_SHARED_LINKER_FLAGS} #-Wl,-rpath=${YAP_LIBDIR} -Wl,-rpath=${YAP_DLLDIR} \
|
||||
#-L${YAP_LIBDIR} -L${YAP_DLLDIR} -lreal -lYAP++ -lYap
|
||||
PKG_CXXFLAGS=-I${YAP_SOURCE_DIR}/CXX -I${YAP_BINARY_DIR}\
|
||||
-I${YAP_SOURCE_DIR}/include -I${YAP_SOURCE_DIR}/H\
|
||||
-I${YAP_SOURCE_DIR}/OPTYap -I${YAP_SOURCE_DIR}/os\
|
||||
|
@ -1,57 +0,0 @@
|
||||
/*******************************************************************************************[Alg.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef Alg_h
|
||||
#define Alg_h
|
||||
|
||||
//=================================================================================================
|
||||
// Useful functions on vectors
|
||||
|
||||
|
||||
#if 1
|
||||
template<class V, class T>
|
||||
static inline void remove(V& ts, const T& t)
|
||||
{
|
||||
int j = 0;
|
||||
for (; j < ts.size() && ts[j] != t; j++);
|
||||
assert(j < ts.size());
|
||||
for (; j < ts.size()-1; j++) ts[j] = ts[j+1];
|
||||
ts.pop();
|
||||
}
|
||||
#else
|
||||
template<class V, class T>
|
||||
static inline void remove(V& ts, const T& t)
|
||||
{
|
||||
int j = 0;
|
||||
for (; j < ts.size() && ts[j] != t; j++);
|
||||
assert(j < ts.size());
|
||||
ts[j] = ts.last();
|
||||
ts.pop();
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class V, class T>
|
||||
static inline bool find(V& ts, const T& t)
|
||||
{
|
||||
int j = 0;
|
||||
for (; j < ts.size() && ts[j] != t; j++);
|
||||
return j < ts.size();
|
||||
}
|
||||
|
||||
#endif
|
@ -1,98 +0,0 @@
|
||||
/******************************************************************************************[Heap.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef BasicHeap_h
|
||||
#define BasicHeap_h
|
||||
|
||||
#include "Vec.h"
|
||||
|
||||
//=================================================================================================
|
||||
// A heap implementation with support for decrease/increase key.
|
||||
|
||||
|
||||
template<class Comp>
|
||||
class BasicHeap {
|
||||
Comp lt;
|
||||
vec<int> heap; // heap of ints
|
||||
|
||||
// Index "traversal" functions
|
||||
static inline int left (int i) { return i*2+1; }
|
||||
static inline int right (int i) { return (i+1)*2; }
|
||||
static inline int parent(int i) { return (i-1) >> 1; }
|
||||
|
||||
inline void percolateUp(int i)
|
||||
{
|
||||
int x = heap[i];
|
||||
while (i != 0 && lt(x, heap[parent(i)])){
|
||||
heap[i] = heap[parent(i)];
|
||||
i = parent(i);
|
||||
}
|
||||
heap [i] = x;
|
||||
}
|
||||
|
||||
|
||||
inline void percolateDown(int i)
|
||||
{
|
||||
int x = heap[i];
|
||||
while (left(i) < heap.size()){
|
||||
int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
|
||||
if (!lt(heap[child], x)) break;
|
||||
heap[i] = heap[child];
|
||||
i = child;
|
||||
}
|
||||
heap[i] = x;
|
||||
}
|
||||
|
||||
|
||||
bool heapProperty(int i) {
|
||||
return i >= heap.size()
|
||||
|| ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
|
||||
|
||||
|
||||
public:
|
||||
BasicHeap(const C& c) : comp(c) { }
|
||||
|
||||
int size () const { return heap.size(); }
|
||||
bool empty () const { return heap.size() == 0; }
|
||||
int operator[](int index) const { return heap[index+1]; }
|
||||
void clear (bool dealloc = false) { heap.clear(dealloc); }
|
||||
void insert (int n) { heap.push(n); percolateUp(heap.size()-1); }
|
||||
|
||||
|
||||
int removeMin() {
|
||||
int r = heap[0];
|
||||
heap[0] = heap.last();
|
||||
heap.pop();
|
||||
if (heap.size() > 1) percolateDown(0);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
// DEBUG: consistency checking
|
||||
bool heapProperty() {
|
||||
return heapProperty(1); }
|
||||
|
||||
|
||||
// COMPAT: should be removed
|
||||
int getmin () { return removeMin(); }
|
||||
};
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
#endif
|
@ -1,147 +0,0 @@
|
||||
/*******************************************************************************************[Vec.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef BoxedVec_h
|
||||
#define BoxedVec_h
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
#include <new>
|
||||
|
||||
//=================================================================================================
|
||||
// Automatically resizable arrays
|
||||
//
|
||||
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
|
||||
|
||||
template<class T>
|
||||
class bvec {
|
||||
|
||||
static inline int imin(int x, int y) {
|
||||
int mask = (x-y) >> (sizeof(int)*8-1);
|
||||
return (x&mask) + (y&(~mask)); }
|
||||
|
||||
static inline int imax(int x, int y) {
|
||||
int mask = (y-x) >> (sizeof(int)*8-1);
|
||||
return (x&mask) + (y&(~mask)); }
|
||||
|
||||
struct Vec_t {
|
||||
int sz;
|
||||
int cap;
|
||||
T data[0];
|
||||
|
||||
static Vec_t* alloc(Vec_t* x, int size){
|
||||
x = (Vec_t*)realloc((void*)x, sizeof(Vec_t) + sizeof(T)*size);
|
||||
x->cap = size;
|
||||
return x;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
Vec_t* ref;
|
||||
|
||||
static const int init_size = 2;
|
||||
static int nextSize (int current) { return (current * 3 + 1) >> 1; }
|
||||
static int fitSize (int needed) { int x; for (x = init_size; needed > x; x = nextSize(x)); return x; }
|
||||
|
||||
void fill (int size) {
|
||||
assert(ref != NULL);
|
||||
for (T* i = ref->data; i < ref->data + size; i++)
|
||||
new (i) T();
|
||||
}
|
||||
|
||||
void fill (int size, const T& pad) {
|
||||
assert(ref != NULL);
|
||||
for (T* i = ref->data; i < ref->data + size; i++)
|
||||
new (i) T(pad);
|
||||
}
|
||||
|
||||
// Don't allow copying (error prone):
|
||||
altvec<T>& operator = (altvec<T>& other) { assert(0); }
|
||||
altvec (altvec<T>& other) { assert(0); }
|
||||
|
||||
public:
|
||||
void clear (bool dealloc = false) {
|
||||
if (ref != NULL){
|
||||
for (int i = 0; i < ref->sz; i++)
|
||||
(*ref).data[i].~T();
|
||||
|
||||
if (dealloc) {
|
||||
free(ref); ref = NULL;
|
||||
}else
|
||||
ref->sz = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Constructors:
|
||||
altvec(void) : ref (NULL) { }
|
||||
altvec(int size) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size); ref->sz = size; }
|
||||
altvec(int size, const T& pad) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size, pad); ref->sz = size; }
|
||||
~altvec(void) { clear(true); }
|
||||
|
||||
// Ownership of underlying array:
|
||||
operator T* (void) { return ref->data; } // (unsafe but convenient)
|
||||
operator const T* (void) const { return ref->data; }
|
||||
|
||||
// Size operations:
|
||||
int size (void) const { return ref != NULL ? ref->sz : 0; }
|
||||
|
||||
void pop (void) { assert(ref != NULL && ref->sz > 0); int last = --ref->sz; ref->data[last].~T(); }
|
||||
void push (const T& elem) {
|
||||
int size = ref != NULL ? ref->sz : 0;
|
||||
int cap = ref != NULL ? ref->cap : 0;
|
||||
if (size == cap){
|
||||
cap = cap != 0 ? nextSize(cap) : init_size;
|
||||
ref = Vec_t::alloc(ref, cap);
|
||||
}
|
||||
//new (&ref->data[size]) T(elem);
|
||||
ref->data[size] = elem;
|
||||
ref->sz = size+1;
|
||||
}
|
||||
|
||||
void push () {
|
||||
int size = ref != NULL ? ref->sz : 0;
|
||||
int cap = ref != NULL ? ref->cap : 0;
|
||||
if (size == cap){
|
||||
cap = cap != 0 ? nextSize(cap) : init_size;
|
||||
ref = Vec_t::alloc(ref, cap);
|
||||
}
|
||||
new (&ref->data[size]) T();
|
||||
ref->sz = size+1;
|
||||
}
|
||||
|
||||
void shrink (int nelems) { for (int i = 0; i < nelems; i++) pop(); }
|
||||
void shrink_(int nelems) { for (int i = 0; i < nelems; i++) pop(); }
|
||||
void growTo (int size) { while (this->size() < size) push(); }
|
||||
void growTo (int size, const T& pad) { while (this->size() < size) push(pad); }
|
||||
void capacity (int size) { growTo(size); }
|
||||
|
||||
const T& last (void) const { return ref->data[ref->sz-1]; }
|
||||
T& last (void) { return ref->data[ref->sz-1]; }
|
||||
|
||||
// Vector interface:
|
||||
const T& operator [] (int index) const { return ref->data[index]; }
|
||||
T& operator [] (int index) { return ref->data[index]; }
|
||||
|
||||
void copyTo(altvec<T>& copy) const { copy.clear(); for (int i = 0; i < size(); i++) copy.push(ref->data[i]); }
|
||||
void moveTo(altvec<T>& dest) { dest.clear(true); dest.ref = ref; ref = NULL; }
|
||||
|
||||
};
|
||||
|
||||
|
||||
#endif
|
@ -1,51 +0,0 @@
|
||||
|
||||
#cmake_minimum_required(VERSION 3.1.0 FATAL_ERROR)
|
||||
|
||||
set ( MINISAT2_HEADERS
|
||||
Alg.h
|
||||
BasicHeap.h
|
||||
BoxedVec.h
|
||||
Heap.h
|
||||
Map.h
|
||||
Queue.h
|
||||
Solver.h
|
||||
SolverTypes.h
|
||||
Sort.h
|
||||
Vec.h
|
||||
)
|
||||
|
||||
set ( MINISAT2_SOURCES
|
||||
Solver.C
|
||||
pl-minisat.C
|
||||
)
|
||||
|
||||
|
||||
INCLUDE_DIRECTORIES(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}
|
||||
)
|
||||
|
||||
add_library(minisat2 ${MINISAT2_SOURCES} ${MINISAT2_HEADERS} )
|
||||
|
||||
set_target_properties (minisat2 PROPERTIES OUTPUT_NAME pl-minisat)
|
||||
set_target_properties (minisat2 PROPERTIES PREFIX "")
|
||||
|
||||
|
||||
if(DEFINED YAP_MAJOR_VERSION)
|
||||
TARGET_LINK_LIBRARIES(minisat2
|
||||
libYap
|
||||
)
|
||||
else()
|
||||
ADD_LIBRARY(minisat2 SHARED ${MINISAT2_SOURCES} )
|
||||
endif()
|
||||
|
||||
#set_property(TARGET minisat2 PROPERTY CXX_STANDARD 11)
|
||||
#set_property(TARGET minisat2 PROPERTY CXX_STANDARD_REQUIRED ON)
|
||||
|
||||
install (
|
||||
TARGETS minisat2
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BIINDIR}
|
||||
ARCHIVE DESTINATION ${YAP_INSTALL_LIBDIR}
|
||||
LIBRARY DESTINATION ${YAP_INSTALL_LIBDIR}
|
||||
)
|
||||
|
||||
|
@ -1,169 +0,0 @@
|
||||
/******************************************************************************************[Heap.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef Heap_h
|
||||
#define Heap_h
|
||||
|
||||
#include "Vec.h"
|
||||
|
||||
//=================================================================================================
|
||||
// A heap implementation with support for decrease/increase key.
|
||||
|
||||
|
||||
template<class Comp>
|
||||
class Heap {
|
||||
Comp lt;
|
||||
vec<int> heap; // heap of ints
|
||||
vec<int> indices; // int -> index in heap
|
||||
|
||||
// Index "traversal" functions
|
||||
static inline int left (int i) { return i*2+1; }
|
||||
static inline int right (int i) { return (i+1)*2; }
|
||||
static inline int parent(int i) { return (i-1) >> 1; }
|
||||
|
||||
|
||||
inline void percolateUp(int i)
|
||||
{
|
||||
int x = heap[i];
|
||||
while (i != 0 && lt(x, heap[parent(i)])){
|
||||
heap[i] = heap[parent(i)];
|
||||
indices[heap[i]] = i;
|
||||
i = parent(i);
|
||||
}
|
||||
heap [i] = x;
|
||||
indices[x] = i;
|
||||
}
|
||||
|
||||
|
||||
inline void percolateDown(int i)
|
||||
{
|
||||
int x = heap[i];
|
||||
while (left(i) < heap.size()){
|
||||
int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
|
||||
if (!lt(heap[child], x)) break;
|
||||
heap[i] = heap[child];
|
||||
indices[heap[i]] = i;
|
||||
i = child;
|
||||
}
|
||||
heap [i] = x;
|
||||
indices[x] = i;
|
||||
}
|
||||
|
||||
|
||||
bool heapProperty (int i) const {
|
||||
return i >= heap.size()
|
||||
|| ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
|
||||
|
||||
|
||||
public:
|
||||
Heap(const Comp& c) : lt(c) { }
|
||||
|
||||
int size () const { return heap.size(); }
|
||||
bool empty () const { return heap.size() == 0; }
|
||||
bool inHeap (int n) const { return n < indices.size() && indices[n] >= 0; }
|
||||
int operator[](int index) const { assert(index < heap.size()); return heap[index]; }
|
||||
|
||||
void decrease (int n) { assert(inHeap(n)); percolateUp(indices[n]); }
|
||||
|
||||
// RENAME WHEN THE DEPRECATED INCREASE IS REMOVED.
|
||||
void increase_ (int n) { assert(inHeap(n)); percolateDown(indices[n]); }
|
||||
|
||||
|
||||
void insert(int n)
|
||||
{
|
||||
indices.growTo(n+1, -1);
|
||||
assert(!inHeap(n));
|
||||
|
||||
indices[n] = heap.size();
|
||||
heap.push(n);
|
||||
percolateUp(indices[n]);
|
||||
}
|
||||
|
||||
|
||||
int removeMin()
|
||||
{
|
||||
int x = heap[0];
|
||||
heap[0] = heap.last();
|
||||
indices[heap[0]] = 0;
|
||||
indices[x] = -1;
|
||||
heap.pop();
|
||||
if (heap.size() > 1) percolateDown(0);
|
||||
return x;
|
||||
}
|
||||
|
||||
|
||||
void clear(bool dealloc = false)
|
||||
{
|
||||
for (int i = 0; i < heap.size(); i++)
|
||||
indices[heap[i]] = -1;
|
||||
#ifdef NDEBUG
|
||||
for (int i = 0; i < indices.size(); i++)
|
||||
assert(indices[i] == -1);
|
||||
#endif
|
||||
heap.clear(dealloc);
|
||||
}
|
||||
|
||||
|
||||
// Fool proof variant of insert/decrease/increase
|
||||
void update (int n)
|
||||
{
|
||||
if (!inHeap(n))
|
||||
insert(n);
|
||||
else {
|
||||
percolateUp(indices[n]);
|
||||
percolateDown(indices[n]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Delete elements from the heap using a given filter function (-object).
|
||||
// *** this could probaly be replaced with a more general "buildHeap(vec<int>&)" method ***
|
||||
template <class F>
|
||||
void filter(const F& filt) {
|
||||
int i,j;
|
||||
for (i = j = 0; i < heap.size(); i++)
|
||||
if (filt(heap[i])){
|
||||
heap[j] = heap[i];
|
||||
indices[heap[i]] = j++;
|
||||
}else
|
||||
indices[heap[i]] = -1;
|
||||
|
||||
heap.shrink(i - j);
|
||||
for (int i = heap.size() / 2 - 1; i >= 0; i--)
|
||||
percolateDown(i);
|
||||
|
||||
assert(heapProperty());
|
||||
}
|
||||
|
||||
|
||||
// DEBUG: consistency checking
|
||||
bool heapProperty() const {
|
||||
return heapProperty(1); }
|
||||
|
||||
|
||||
// COMPAT: should be removed
|
||||
void setBounds (int n) { }
|
||||
void increase (int n) { decrease(n); }
|
||||
int getmin () { return removeMin(); }
|
||||
|
||||
};
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
#endif
|
@ -1,96 +0,0 @@
|
||||
#
|
||||
# default base directory for YAP installation
|
||||
# (EROOT for architecture-dependent files)
|
||||
#
|
||||
GCC=@GCC@
|
||||
prefix = @prefix@
|
||||
exec_prefix = @exec_prefix@
|
||||
ROOTDIR = $(prefix)
|
||||
EROOTDIR = @exec_prefix@
|
||||
abs_top_builddir = @abs_top_builddir@
|
||||
#
|
||||
# where the binary should be
|
||||
#
|
||||
BINDIR = $(EROOTDIR)/bin
|
||||
#
|
||||
# where YAP should look for libraries
|
||||
#
|
||||
LIBDIR=@libdir@
|
||||
YAPLIBDIR=@libdir@/Yap
|
||||
#
|
||||
#
|
||||
DEFS=@DEFS@ -D_YAP_NOT_INSTALLED_=1
|
||||
CC=@CC@
|
||||
CXX=@CXX@
|
||||
CXXFLAGS= @SHLIB_CXXFLAGS@ $(YAP_EXTRAS) $(DEFS) -I$(srcdir) -I../../.. -I$(srcdir)/../../../os -I$(srcdir)/../../../include @CPPFLAGS@
|
||||
LDFLAGS=@LDFLAGS@
|
||||
#
|
||||
#
|
||||
# You shouldn't need to change what follows.
|
||||
#
|
||||
INSTALL=@INSTALL@
|
||||
INSTALL_DATA=@INSTALL_DATA@
|
||||
INSTALL_PROGRAM=@INSTALL_PROGRAM@
|
||||
SHELL=/bin/sh
|
||||
RANLIB=@RANLIB@
|
||||
srcdir=@srcdir@
|
||||
SO=@SO@
|
||||
#4.1VPATH=@srcdir@:@srcdir@/OPTYap
|
||||
CWD=$(PWD)
|
||||
#
|
||||
|
||||
HEADERS= \
|
||||
$(srcdir)/Alg.h \
|
||||
$(srcdir)/BasicHeap.h \
|
||||
$(srcdir)/BoxedVec.h \
|
||||
$(srcdir)/Heap.h \
|
||||
$(srcdir)/Map.h \
|
||||
$(srcdir)/Queue.h \
|
||||
$(srcdir)/Solver.h \
|
||||
$(srcdir)/SolverTypes.h \
|
||||
$(srcdir)/Sort.h \
|
||||
$(srcdir)/Vec.h
|
||||
C_SOURCES=$(srcdir)/pl-minisat.C $(srcdir)/Solver.C
|
||||
|
||||
OBJS = \
|
||||
Solver.o \
|
||||
pl-minisat.o
|
||||
|
||||
SOBJS=pl-minisat.@SO@
|
||||
|
||||
#in some systems we just create a single object, in others we need to
|
||||
# create a libray
|
||||
|
||||
all: $(SOBJS)
|
||||
|
||||
# default rule
|
||||
Solver.o : $(srcdir)/Solver.C
|
||||
$(CXX) -c $(CXXFLAGS) $(srcdir)/Solver.C -o Solver.o
|
||||
|
||||
pl-minisat.o : $(srcdir)/pl-minisat.C
|
||||
$(CXX) -c $(CXXFLAGS) $(srcdir)/pl-minisat.C -o pl-minisat.o
|
||||
|
||||
@DO_SECOND_LD@pl-minisat.@SO@: $(OBJS)
|
||||
@DO_SECOND_LD@ @SHLIB_CXX_LD@ $(LDFLAGS) -o pl-minisat.@SO@ $(OBJS) @EXTRA_LIBS_FOR_SWIDLLS@
|
||||
|
||||
install: all
|
||||
$(INSTALL_PROGRAM) $(SOBJS) $(DESTDIR)$(YAPLIBDIR)
|
||||
|
||||
install-examples:
|
||||
|
||||
clean:
|
||||
rm -f *.o *~ $(OBJS) $(SOBJS) *.BAK
|
||||
|
||||
distclean:
|
||||
rm -f Makefile $(OBJS)
|
||||
|
||||
|
||||
depend: $(HEADERS) $(C_SOURCES)
|
||||
-@if test "$(GCC)" = yes; then\
|
||||
$(CC) -MM -MG $(CFLAGS) -I$(srcdir) -I$(srcdir)/../../../include -I$(srcdir)/../../../H $(C_SOURCES) >> Makefile;\
|
||||
else\
|
||||
makedepend -f - -- $(CFLAGS) -I$(srcdir)/../../../H -I$(srcdir)/../../../include -- $(C_SOURCES) |\
|
||||
sed 's|.*/\([^:]*\):|\1:|' >> Makefile ;\
|
||||
fi
|
||||
|
||||
# DO NOT DELETE THIS LINE -- make depend depends on it.
|
@ -1,118 +0,0 @@
|
||||
/*******************************************************************************************[Map.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef Map_h
|
||||
#define Map_h
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "Vec.h"
|
||||
|
||||
//=================================================================================================
|
||||
// Default hash/equals functions
|
||||
//
|
||||
|
||||
template<class K> struct Hash { uint32_t operator()(const K& k) const { return hash(k); } };
|
||||
template<class K> struct Equal { bool operator()(const K& k1, const K& k2) const { return k1 == k2; } };
|
||||
|
||||
template<class K> struct DeepHash { uint32_t operator()(const K* k) const { return hash(*k); } };
|
||||
template<class K> struct DeepEqual { bool operator()(const K* k1, const K* k2) const { return *k1 == *k2; } };
|
||||
|
||||
//=================================================================================================
|
||||
// Some primes
|
||||
//
|
||||
|
||||
static const int nprimes = 25;
|
||||
static const int primes [nprimes] = { 31, 73, 151, 313, 643, 1291, 2593, 5233, 10501, 21013, 42073, 84181, 168451, 337219, 674701, 1349473, 2699299, 5398891, 10798093, 21596719, 43193641, 86387383, 172775299, 345550609, 691101253 };
|
||||
|
||||
//=================================================================================================
|
||||
// Hash table implementation of Maps
|
||||
//
|
||||
|
||||
template<class K, class D, class H = Hash<K>, class E = Equal<K> >
|
||||
class Map {
|
||||
struct Pair { K key; D data; };
|
||||
|
||||
H hash;
|
||||
E equals;
|
||||
|
||||
vec<Pair>* table;
|
||||
int cap;
|
||||
int size;
|
||||
|
||||
// Don't allow copying (error prone):
|
||||
Map<K,D,H,E>& operator = (Map<K,D,H,E>& other) { assert(0); }
|
||||
Map (Map<K,D,H,E>& other) { assert(0); }
|
||||
|
||||
int32_t index (const K& k) const { return hash(k) % cap; }
|
||||
void _insert (const K& k, const D& d) { table[index(k)].push(); table[index(k)].last().key = k; table[index(k)].last().data = d; }
|
||||
void rehash () {
|
||||
const vec<Pair>* old = table;
|
||||
|
||||
int newsize = primes[0];
|
||||
for (int i = 1; newsize <= cap && i < nprimes; i++)
|
||||
newsize = primes[i];
|
||||
|
||||
table = new vec<Pair>[newsize];
|
||||
|
||||
for (int i = 0; i < cap; i++){
|
||||
for (int j = 0; j < old[i].size(); j++){
|
||||
_insert(old[i][j].key, old[i][j].data); }}
|
||||
|
||||
delete [] old;
|
||||
|
||||
cap = newsize;
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
Map () : table(NULL), cap(0), size(0) {}
|
||||
Map (const H& h, const E& e) : Map(), hash(h), equals(e) {}
|
||||
~Map () { delete [] table; }
|
||||
|
||||
void insert (const K& k, const D& d) { if (size+1 > cap / 2) rehash(); _insert(k, d); size++; }
|
||||
bool peek (const K& k, D& d) {
|
||||
if (size == 0) return false;
|
||||
const vec<Pair>& ps = table[index(k)];
|
||||
for (int i = 0; i < ps.size(); i++)
|
||||
if (equals(ps[i].key, k)){
|
||||
d = ps[i].data;
|
||||
return true; }
|
||||
return false;
|
||||
}
|
||||
|
||||
void remove (const K& k) {
|
||||
assert(table != NULL);
|
||||
vec<Pair>& ps = table[index(k)];
|
||||
int j = 0;
|
||||
for (; j < ps.size() && !equals(ps[j].key, k); j++);
|
||||
assert(j < ps.size());
|
||||
ps[j] = ps.last();
|
||||
ps.pop();
|
||||
}
|
||||
|
||||
void clear () {
|
||||
cap = size = 0;
|
||||
delete [] table;
|
||||
table = NULL;
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
@ -1,82 +0,0 @@
|
||||
/*****************************************************************************************[Queue.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef Queue_h
|
||||
#define Queue_h
|
||||
|
||||
#include "Vec.h"
|
||||
|
||||
//=================================================================================================
|
||||
|
||||
|
||||
template <class T>
|
||||
class Queue {
|
||||
vec<T> elems;
|
||||
int first;
|
||||
|
||||
public:
|
||||
Queue(void) : first(0) { }
|
||||
|
||||
void insert(T x) { elems.push(x); }
|
||||
T peek () const { return elems[first]; }
|
||||
void pop () { first++; }
|
||||
|
||||
void clear(bool dealloc = false) { elems.clear(dealloc); first = 0; }
|
||||
int size(void) { return elems.size() - first; }
|
||||
|
||||
//bool has(T x) { for (int i = first; i < elems.size(); i++) if (elems[i] == x) return true; return false; }
|
||||
|
||||
const T& operator [] (int index) const { return elems[first + index]; }
|
||||
|
||||
};
|
||||
|
||||
//template<class T>
|
||||
//class Queue {
|
||||
// vec<T> buf;
|
||||
// int first;
|
||||
// int end;
|
||||
//
|
||||
//public:
|
||||
// typedef T Key;
|
||||
//
|
||||
// Queue() : buf(1), first(0), end(0) {}
|
||||
//
|
||||
// void clear () { buf.shrinkTo(1); first = end = 0; }
|
||||
// int size () { return (end >= first) ? end - first : end - first + buf.size(); }
|
||||
//
|
||||
// T peek () { assert(first != end); return buf[first]; }
|
||||
// void pop () { assert(first != end); first++; if (first == buf.size()) first = 0; }
|
||||
// void insert(T elem) { // INVARIANT: buf[end] is always unused
|
||||
// buf[end++] = elem;
|
||||
// if (end == buf.size()) end = 0;
|
||||
// if (first == end){ // Resize:
|
||||
// vec<T> tmp((buf.size()*3 + 1) >> 1);
|
||||
// //**/printf("queue alloc: %d elems (%.1f MB)\n", tmp.size(), tmp.size() * sizeof(T) / 1000000.0);
|
||||
// int i = 0;
|
||||
// for (int j = first; j < buf.size(); j++) tmp[i++] = buf[j];
|
||||
// for (int j = 0 ; j < end ; j++) tmp[i++] = buf[j];
|
||||
// first = 0;
|
||||
// end = buf.size();
|
||||
// tmp.moveTo(buf);
|
||||
// }
|
||||
// }
|
||||
//};
|
||||
|
||||
//=================================================================================================
|
||||
#endif
|
@ -1,791 +0,0 @@
|
||||
/****************************************************************************************[Solver.C]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#include "Solver.h"
|
||||
#include "Sort.h"
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
// Constructor/Destructor:
|
||||
|
||||
|
||||
Solver::Solver() :
|
||||
|
||||
// Parameters: (formerly in 'SearchParams')
|
||||
var_decay(1 / 0.95), clause_decay(1 / 0.999), random_var_freq(0.02)
|
||||
, restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
|
||||
|
||||
// More parameters:
|
||||
//
|
||||
, expensive_ccmin (true)
|
||||
, polarity_mode (polarity_false)
|
||||
, verbosity (0)
|
||||
|
||||
// Statistics: (formerly in 'SolverStats')
|
||||
//
|
||||
, starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
|
||||
, clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
|
||||
|
||||
//***************
|
||||
, allMinVarsAssigned(false)
|
||||
//***************
|
||||
|
||||
, ok (true)
|
||||
, cla_inc (1)
|
||||
, var_inc (1)
|
||||
, qhead (0)
|
||||
, simpDB_assigns (-1)
|
||||
, simpDB_props (0)
|
||||
, order_heap (VarOrderLt(activity))
|
||||
, random_seed (91648253)
|
||||
, progress_estimate(0)
|
||||
, remove_satisfied (true)
|
||||
{}
|
||||
|
||||
|
||||
Solver::~Solver()
|
||||
{
|
||||
for (int i = 0; i < learnts.size(); i++) std::free(learnts[i]);
|
||||
for (int i = 0; i < clauses.size(); i++) std::free(clauses[i]);
|
||||
}
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
// Minor methods:
|
||||
|
||||
|
||||
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
|
||||
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
|
||||
//
|
||||
Var Solver::newVar(bool sign, bool dvar)
|
||||
{
|
||||
int v = nVars();
|
||||
watches .push(); // (list for positive literal)
|
||||
watches .push(); // (list for negative literal)
|
||||
reason .push(NULL);
|
||||
assigns .push(toInt(l_Undef));
|
||||
level .push(-1);
|
||||
activity .push(0);
|
||||
seen .push(0);
|
||||
|
||||
polarity .push((char)sign);
|
||||
decision_var.push((char)dvar);
|
||||
|
||||
insertVarOrder(v);
|
||||
return v;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool Solver::addClause(vec<Lit>& ps)
|
||||
{
|
||||
assert(decisionLevel() == 0);
|
||||
|
||||
if (!ok)
|
||||
return false;
|
||||
else{
|
||||
// Check if clause is satisfied and remove false/duplicate literals:
|
||||
sort(ps);
|
||||
Lit p; int i, j;
|
||||
for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
|
||||
if (value(ps[i]) == l_True || ps[i] == ~p)
|
||||
return true;
|
||||
else if (value(ps[i]) != l_False && ps[i] != p)
|
||||
ps[j++] = p = ps[i];
|
||||
ps.shrink(i - j);
|
||||
}
|
||||
|
||||
if (ps.size() == 0)
|
||||
return ok = false;
|
||||
else if (ps.size() == 1){
|
||||
assert(value(ps[0]) == l_Undef);
|
||||
uncheckedEnqueue(ps[0]);
|
||||
return ok = (propagate() == NULL);
|
||||
}else{
|
||||
Clause* c = Clause_new(ps, false);
|
||||
clauses.push(c);
|
||||
attachClause(*c);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
//****************
|
||||
bool Solver::setminVars(vec<Lit>& ps)
|
||||
{
|
||||
minVars.clear();
|
||||
for (int i=0; i < ps.size(); i++){
|
||||
minVars.push(ps[i]);
|
||||
}
|
||||
allMinVarsAssigned = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
//****************
|
||||
|
||||
|
||||
void Solver::attachClause(Clause& c) {
|
||||
assert(c.size() > 1);
|
||||
watches[toInt(~c[0])].push(&c);
|
||||
watches[toInt(~c[1])].push(&c);
|
||||
if (c.learnt()) learnts_literals += c.size();
|
||||
else clauses_literals += c.size(); }
|
||||
|
||||
|
||||
void Solver::detachClause(Clause& c) {
|
||||
assert(c.size() > 1);
|
||||
assert(find(watches[toInt(~c[0])], &c));
|
||||
assert(find(watches[toInt(~c[1])], &c));
|
||||
remove(watches[toInt(~c[0])], &c);
|
||||
remove(watches[toInt(~c[1])], &c);
|
||||
if (c.learnt()) learnts_literals -= c.size();
|
||||
else clauses_literals -= c.size(); }
|
||||
|
||||
|
||||
void Solver::removeClause(Clause& c) {
|
||||
detachClause(c);
|
||||
std::free(&c); }
|
||||
|
||||
|
||||
bool Solver::satisfied(const Clause& c) const {
|
||||
for (int i = 0; i < c.size(); i++)
|
||||
if (value(c[i]) == l_True)
|
||||
return true;
|
||||
return false; }
|
||||
|
||||
|
||||
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
|
||||
//
|
||||
void Solver::cancelUntil(int level) {
|
||||
if (decisionLevel() > level){
|
||||
for (int c = trail.size()-1; c >= trail_lim[level]; c--){
|
||||
Var x = var(trail[c]);
|
||||
assigns[x] = toInt(l_Undef);
|
||||
insertVarOrder(x); }
|
||||
qhead = trail_lim[level];
|
||||
trail.shrink(trail.size() - trail_lim[level]);
|
||||
trail_lim.shrink(trail_lim.size() - level);
|
||||
}
|
||||
|
||||
//**************************
|
||||
if (lastMinVarDL > level){
|
||||
allMinVarsAssigned = false;
|
||||
}
|
||||
//**************************
|
||||
}
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
// Major methods:
|
||||
|
||||
|
||||
Lit Solver::pickBranchLit(int polarity_mode, double random_var_freq)
|
||||
{
|
||||
Var next = var_Undef;
|
||||
|
||||
// Random decision:
|
||||
if (drand(random_seed) < random_var_freq && !order_heap.empty()){
|
||||
next = order_heap[irand(random_seed,order_heap.size())];
|
||||
if (toLbool(assigns[next]) == l_Undef && decision_var[next])
|
||||
rnd_decisions++; }
|
||||
|
||||
// Activity based decision:
|
||||
while (next == var_Undef || toLbool(assigns[next]) != l_Undef || !decision_var[next])
|
||||
if (order_heap.empty()){
|
||||
next = var_Undef;
|
||||
break;
|
||||
}else
|
||||
next = order_heap.removeMin();
|
||||
|
||||
bool sign = false;
|
||||
switch (polarity_mode){
|
||||
case polarity_true: sign = false; break;
|
||||
case polarity_false: sign = true; break;
|
||||
case polarity_user: sign = polarity[next]; break;
|
||||
case polarity_rnd: sign = irand(random_seed, 2); break;
|
||||
default: assert(false); }
|
||||
|
||||
return next == var_Undef ? lit_Undef : Lit(next, sign);
|
||||
}
|
||||
|
||||
|
||||
/*_________________________________________________________________________________________________
|
||||
|
|
||||
| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
|
||||
|
|
||||
| Description:
|
||||
| Analyze conflict and produce a reason clause.
|
||||
|
|
||||
| Pre-conditions:
|
||||
| * 'out_learnt' is assumed to be cleared.
|
||||
| * Current decision level must be greater than root level.
|
||||
|
|
||||
| Post-conditions:
|
||||
| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
|
||||
|
|
||||
| Effect:
|
||||
| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
|
||||
|________________________________________________________________________________________________@*/
|
||||
void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
|
||||
{
|
||||
int pathC = 0;
|
||||
Lit p = lit_Undef;
|
||||
|
||||
// Generate conflict clause:
|
||||
//
|
||||
out_learnt.push(); // (leave room for the asserting literal)
|
||||
int index = trail.size() - 1;
|
||||
out_btlevel = 0;
|
||||
|
||||
do{
|
||||
assert(confl != NULL); // (otherwise should be UIP)
|
||||
Clause& c = *confl;
|
||||
|
||||
if (c.learnt())
|
||||
claBumpActivity(c);
|
||||
|
||||
for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
|
||||
Lit q = c[j];
|
||||
|
||||
if (!seen[var(q)] && level[var(q)] > 0){
|
||||
varBumpActivity(var(q));
|
||||
seen[var(q)] = 1;
|
||||
if (level[var(q)] >= decisionLevel())
|
||||
pathC++;
|
||||
else{
|
||||
out_learnt.push(q);
|
||||
if (level[var(q)] > out_btlevel)
|
||||
out_btlevel = level[var(q)];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Select next clause to look at:
|
||||
while (!seen[var(trail[index--])]);
|
||||
p = trail[index+1];
|
||||
confl = reason[var(p)];
|
||||
seen[var(p)] = 0;
|
||||
pathC--;
|
||||
|
||||
}while (pathC > 0);
|
||||
out_learnt[0] = ~p;
|
||||
|
||||
// Simplify conflict clause:
|
||||
//
|
||||
int i, j;
|
||||
if (expensive_ccmin){
|
||||
uint32_t abstract_level = 0;
|
||||
for (i = 1; i < out_learnt.size(); i++)
|
||||
abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
|
||||
|
||||
out_learnt.copyTo(analyze_toclear);
|
||||
for (i = j = 1; i < out_learnt.size(); i++)
|
||||
if (reason[var(out_learnt[i])] == NULL || !litRedundant(out_learnt[i], abstract_level))
|
||||
out_learnt[j++] = out_learnt[i];
|
||||
}else{
|
||||
out_learnt.copyTo(analyze_toclear);
|
||||
for (i = j = 1; i < out_learnt.size(); i++){
|
||||
Clause& c = *reason[var(out_learnt[i])];
|
||||
for (int k = 1; k < c.size(); k++)
|
||||
if (!seen[var(c[k])] && level[var(c[k])] > 0){
|
||||
out_learnt[j++] = out_learnt[i];
|
||||
break; }
|
||||
}
|
||||
}
|
||||
max_literals += out_learnt.size();
|
||||
out_learnt.shrink(i - j);
|
||||
tot_literals += out_learnt.size();
|
||||
|
||||
// Find correct backtrack level:
|
||||
//
|
||||
if (out_learnt.size() == 1)
|
||||
out_btlevel = 0;
|
||||
else{
|
||||
int max_i = 1;
|
||||
for (int i = 2; i < out_learnt.size(); i++)
|
||||
if (level[var(out_learnt[i])] > level[var(out_learnt[max_i])])
|
||||
max_i = i;
|
||||
Lit p = out_learnt[max_i];
|
||||
out_learnt[max_i] = out_learnt[1];
|
||||
out_learnt[1] = p;
|
||||
out_btlevel = level[var(p)];
|
||||
}
|
||||
|
||||
|
||||
for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
|
||||
}
|
||||
|
||||
|
||||
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
|
||||
// visiting literals at levels that cannot be removed later.
|
||||
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
|
||||
{
|
||||
analyze_stack.clear(); analyze_stack.push(p);
|
||||
int top = analyze_toclear.size();
|
||||
while (analyze_stack.size() > 0){
|
||||
assert(reason[var(analyze_stack.last())] != NULL);
|
||||
Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop();
|
||||
|
||||
for (int i = 1; i < c.size(); i++){
|
||||
Lit p = c[i];
|
||||
if (!seen[var(p)] && level[var(p)] > 0){
|
||||
if (reason[var(p)] != NULL && (abstractLevel(var(p)) & abstract_levels) != 0){
|
||||
seen[var(p)] = 1;
|
||||
analyze_stack.push(p);
|
||||
analyze_toclear.push(p);
|
||||
}else{
|
||||
for (int j = top; j < analyze_toclear.size(); j++)
|
||||
seen[var(analyze_toclear[j])] = 0;
|
||||
analyze_toclear.shrink(analyze_toclear.size() - top);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/*_________________________________________________________________________________________________
|
||||
|
|
||||
| analyzeFinal : (p : Lit) -> [void]
|
||||
|
|
||||
| Description:
|
||||
| Specialized analysis procedure to express the final conflict in terms of assumptions.
|
||||
| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
|
||||
| stores the result in 'out_conflict'.
|
||||
|________________________________________________________________________________________________@*/
|
||||
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
|
||||
{
|
||||
out_conflict.clear();
|
||||
out_conflict.push(p);
|
||||
|
||||
if (decisionLevel() == 0)
|
||||
return;
|
||||
|
||||
seen[var(p)] = 1;
|
||||
|
||||
for (int i = trail.size()-1; i >= trail_lim[0]; i--){
|
||||
Var x = var(trail[i]);
|
||||
if (seen[x]){
|
||||
if (reason[x] == NULL){
|
||||
assert(level[x] > 0);
|
||||
out_conflict.push(~trail[i]);
|
||||
}else{
|
||||
Clause& c = *reason[x];
|
||||
for (int j = 1; j < c.size(); j++)
|
||||
if (level[var(c[j])] > 0)
|
||||
seen[var(c[j])] = 1;
|
||||
}
|
||||
seen[x] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
seen[var(p)] = 0;
|
||||
}
|
||||
|
||||
|
||||
void Solver::uncheckedEnqueue(Lit p, Clause* from)
|
||||
{
|
||||
assert(value(p) == l_Undef);
|
||||
assigns [var(p)] = toInt(lbool(!sign(p))); // <<== abstract but not uttermost effecient
|
||||
level [var(p)] = decisionLevel();
|
||||
reason [var(p)] = from;
|
||||
trail.push(p);
|
||||
}
|
||||
|
||||
|
||||
/*_________________________________________________________________________________________________
|
||||
|
|
||||
| propagate : [void] -> [Clause*]
|
||||
|
|
||||
| Description:
|
||||
| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
|
||||
| otherwise NULL.
|
||||
|
|
||||
| Post-conditions:
|
||||
| * the propagation queue is empty, even if there was a conflict.
|
||||
|________________________________________________________________________________________________@*/
|
||||
Clause* Solver::propagate()
|
||||
{
|
||||
Clause* confl = NULL;
|
||||
int num_props = 0;
|
||||
|
||||
while (qhead < trail.size()){
|
||||
Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
|
||||
vec<Clause*>& ws = watches[toInt(p)];
|
||||
Clause **i, **j, **end;
|
||||
num_props++;
|
||||
|
||||
for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){
|
||||
Clause& c = **i++;
|
||||
|
||||
// Make sure the false literal is data[1]:
|
||||
Lit false_lit = ~p;
|
||||
if (c[0] == false_lit)
|
||||
c[0] = c[1], c[1] = false_lit;
|
||||
|
||||
assert(c[1] == false_lit);
|
||||
|
||||
// If 0th watch is true, then clause is already satisfied.
|
||||
Lit first = c[0];
|
||||
if (value(first) == l_True){
|
||||
*j++ = &c;
|
||||
}else{
|
||||
// Look for new watch:
|
||||
for (int k = 2; k < c.size(); k++)
|
||||
if (value(c[k]) != l_False){
|
||||
c[1] = c[k]; c[k] = false_lit;
|
||||
watches[toInt(~c[1])].push(&c);
|
||||
goto FoundWatch; }
|
||||
|
||||
// Did not find watch -- clause is unit under assignment:
|
||||
*j++ = &c;
|
||||
if (value(first) == l_False){
|
||||
confl = &c;
|
||||
qhead = trail.size();
|
||||
// Copy the remaining watches:
|
||||
while (i < end)
|
||||
*j++ = *i++;
|
||||
}else
|
||||
uncheckedEnqueue(first, &c);
|
||||
}
|
||||
FoundWatch:;
|
||||
}
|
||||
ws.shrink(i - j);
|
||||
}
|
||||
propagations += num_props;
|
||||
simpDB_props -= num_props;
|
||||
|
||||
return confl;
|
||||
}
|
||||
|
||||
/*_________________________________________________________________________________________________
|
||||
|
|
||||
| reduceDB : () -> [void]
|
||||
|
|
||||
| Description:
|
||||
| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
|
||||
| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
|
||||
|________________________________________________________________________________________________@*/
|
||||
struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } };
|
||||
void Solver::reduceDB()
|
||||
{
|
||||
int i, j;
|
||||
double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
|
||||
|
||||
sort(learnts, reduceDB_lt());
|
||||
for (i = j = 0; i < learnts.size() / 2; i++){
|
||||
if (learnts[i]->size() > 2 && !locked(*learnts[i]))
|
||||
removeClause(*learnts[i]);
|
||||
else
|
||||
learnts[j++] = learnts[i];
|
||||
}
|
||||
for (; i < learnts.size(); i++){
|
||||
if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
|
||||
removeClause(*learnts[i]);
|
||||
else
|
||||
learnts[j++] = learnts[i];
|
||||
}
|
||||
learnts.shrink(i - j);
|
||||
}
|
||||
|
||||
|
||||
void Solver::removeSatisfied(vec<Clause*>& cs)
|
||||
{
|
||||
int i,j;
|
||||
for (i = j = 0; i < cs.size(); i++){
|
||||
if (satisfied(*cs[i]))
|
||||
removeClause(*cs[i]);
|
||||
else
|
||||
cs[j++] = cs[i];
|
||||
}
|
||||
cs.shrink(i - j);
|
||||
}
|
||||
|
||||
|
||||
/*_________________________________________________________________________________________________
|
||||
|
|
||||
| simplify : [void] -> [bool]
|
||||
|
|
||||
| Description:
|
||||
| Simplify the clause database according to the current top-level assigment. Currently, the only
|
||||
| thing done here is the removal of satisfied clauses, but more things can be put here.
|
||||
|________________________________________________________________________________________________@*/
|
||||
bool Solver::simplify()
|
||||
{
|
||||
assert(decisionLevel() == 0);
|
||||
|
||||
if (!ok || propagate() != NULL)
|
||||
return ok = false;
|
||||
|
||||
if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
|
||||
return true;
|
||||
|
||||
// Remove satisfied clauses:
|
||||
removeSatisfied(learnts);
|
||||
if (remove_satisfied) // Can be turned off.
|
||||
removeSatisfied(clauses);
|
||||
|
||||
// Remove fixed variables from the variable heap:
|
||||
order_heap.filter(VarFilter(*this));
|
||||
|
||||
simpDB_assigns = nAssigns();
|
||||
simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/*_________________________________________________________________________________________________
|
||||
|
|
||||
| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
|
||||
|
|
||||
| Description:
|
||||
| Search for a model the specified number of conflicts, keeping the number of learnt clauses
|
||||
| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
|
||||
| indicate infinity.
|
||||
|
|
||||
| Output:
|
||||
| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
|
||||
| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
|
||||
| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
|
||||
|________________________________________________________________________________________________@*/
|
||||
lbool Solver::search(int nof_conflicts, int nof_learnts)
|
||||
{
|
||||
assert(ok);
|
||||
int backtrack_level;
|
||||
int conflictC = 0;
|
||||
vec<Lit> learnt_clause;
|
||||
|
||||
starts++;
|
||||
|
||||
// bool first = true;
|
||||
|
||||
for (;;){
|
||||
Clause* confl = propagate();
|
||||
if (confl != NULL){
|
||||
// CONFLICT
|
||||
conflicts++; conflictC++;
|
||||
if (decisionLevel() == 0) return l_False;
|
||||
|
||||
// first = false;
|
||||
|
||||
learnt_clause.clear();
|
||||
analyze(confl, learnt_clause, backtrack_level);
|
||||
cancelUntil(backtrack_level);
|
||||
assert(value(learnt_clause[0]) == l_Undef);
|
||||
|
||||
if (learnt_clause.size() == 1){
|
||||
uncheckedEnqueue(learnt_clause[0]);
|
||||
}else{
|
||||
Clause* c = Clause_new(learnt_clause, true);
|
||||
learnts.push(c);
|
||||
attachClause(*c);
|
||||
claBumpActivity(*c);
|
||||
uncheckedEnqueue(learnt_clause[0], c);
|
||||
}
|
||||
|
||||
varDecayActivity();
|
||||
claDecayActivity();
|
||||
|
||||
}else{
|
||||
// NO CONFLICT
|
||||
|
||||
if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
|
||||
// Reached bound on number of conflicts:
|
||||
progress_estimate = progressEstimate();
|
||||
cancelUntil(0);
|
||||
return l_Undef; }
|
||||
|
||||
// Simplify the set of problem clauses:
|
||||
if (decisionLevel() == 0 && !simplify())
|
||||
return l_False;
|
||||
|
||||
if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
|
||||
// Reduce the set of learnt clauses:
|
||||
reduceDB();
|
||||
|
||||
Lit next = lit_Undef;
|
||||
while (decisionLevel() < assumptions.size()){
|
||||
// Perform user provided assumption:
|
||||
Lit p = assumptions[decisionLevel()];
|
||||
if (value(p) == l_True){
|
||||
// Dummy decision level:
|
||||
newDecisionLevel();
|
||||
}else if (value(p) == l_False){
|
||||
analyzeFinal(~p, conflict);
|
||||
return l_False;
|
||||
}else{
|
||||
next = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//**************************
|
||||
if (next == lit_Undef){
|
||||
// New variable decision:
|
||||
decisions++;
|
||||
|
||||
if (!allMinVarsAssigned){
|
||||
for (int i=0; i<minVars.size(); i++){
|
||||
if (value(minVars[i])==l_Undef){
|
||||
next = minVars[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (next == lit_Undef){
|
||||
allMinVarsAssigned = true;
|
||||
lastMinVarDL = decisionLevel();
|
||||
}
|
||||
}
|
||||
}
|
||||
//***************************
|
||||
|
||||
|
||||
if (next == lit_Undef){
|
||||
// New variable decision:
|
||||
decisions++;
|
||||
next = pickBranchLit(polarity_mode, random_var_freq);
|
||||
|
||||
if (next == lit_Undef)
|
||||
// Model found:
|
||||
return l_True;
|
||||
}
|
||||
|
||||
// Increase decision level and enqueue 'next'
|
||||
assert(value(next) == l_Undef);
|
||||
newDecisionLevel();
|
||||
uncheckedEnqueue(next);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double Solver::progressEstimate() const
|
||||
{
|
||||
double progress = 0;
|
||||
double F = 1.0 / nVars();
|
||||
|
||||
for (int i = 0; i <= decisionLevel(); i++){
|
||||
int beg = i == 0 ? 0 : trail_lim[i - 1];
|
||||
int end = i == decisionLevel() ? trail.size() : trail_lim[i];
|
||||
progress += pow(F, i) * (end - beg);
|
||||
}
|
||||
|
||||
return progress / nVars();
|
||||
}
|
||||
|
||||
|
||||
bool Solver::solve(const vec<Lit>& assumps)
|
||||
{
|
||||
model.clear();
|
||||
conflict.clear();
|
||||
|
||||
allMinVarsAssigned = false;
|
||||
|
||||
if (!ok) return false;
|
||||
|
||||
assumps.copyTo(assumptions);
|
||||
|
||||
double nof_conflicts = restart_first;
|
||||
double nof_learnts = nClauses() * learntsize_factor;
|
||||
lbool status = l_Undef;
|
||||
|
||||
if (verbosity >= 1){
|
||||
reportf("============================[ Search Statistics ]==============================\n");
|
||||
reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
|
||||
reportf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
|
||||
reportf("===============================================================================\n");
|
||||
}
|
||||
|
||||
// Search:
|
||||
while (status == l_Undef){
|
||||
if (verbosity >= 1)
|
||||
reportf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout);
|
||||
status = search((int)nof_conflicts, (int)nof_learnts);
|
||||
nof_conflicts *= restart_inc;
|
||||
nof_learnts *= learntsize_inc;
|
||||
}
|
||||
|
||||
if (verbosity >= 1)
|
||||
reportf("===============================================================================\n");
|
||||
|
||||
|
||||
if (status == l_True){
|
||||
// Extend & copy model:
|
||||
model.growTo(nVars());
|
||||
for (int i = 0; i < nVars(); i++) model[i] = value(i);
|
||||
#ifndef NDEBUG
|
||||
verifyModel();
|
||||
#endif
|
||||
}else{
|
||||
assert(status == l_False);
|
||||
if (conflict.size() == 0)
|
||||
ok = false;
|
||||
}
|
||||
|
||||
cancelUntil(0);
|
||||
return status == l_True;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void Solver::verifyModel()
|
||||
{
|
||||
bool failed = false;
|
||||
for (int i = 0; i < clauses.size(); i++){
|
||||
assert(clauses[i]->mark() == 0);
|
||||
Clause& c = *clauses[i];
|
||||
for (int j = 0; j < c.size(); j++)
|
||||
if (modelValue(c[j]) == l_True)
|
||||
goto next;
|
||||
|
||||
reportf("unsatisfied clause: ");
|
||||
printClause(*clauses[i]);
|
||||
reportf("\n");
|
||||
failed = true;
|
||||
next:;
|
||||
}
|
||||
|
||||
assert(!failed);
|
||||
|
||||
// reportf("Verified %d original clauses.\n", clauses.size());
|
||||
}
|
||||
|
||||
|
||||
void Solver::checkLiteralCount()
|
||||
{
|
||||
// Check that sizes are calculated correctly:
|
||||
int cnt = 0;
|
||||
for (int i = 0; i < clauses.size(); i++)
|
||||
if (clauses[i]->mark() == 0)
|
||||
cnt += clauses[i]->size();
|
||||
|
||||
if ((int)clauses_literals != cnt){
|
||||
fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt);
|
||||
assert((int)clauses_literals == cnt);
|
||||
}
|
||||
}
|
@ -1,311 +0,0 @@
|
||||
/****************************************************************************************[Solver.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef Solver_h
|
||||
#define Solver_h
|
||||
|
||||
#include <cstdio>
|
||||
|
||||
#include "Vec.h"
|
||||
#include "Heap.h"
|
||||
#include "Alg.h"
|
||||
|
||||
#include "SolverTypes.h"
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
// Solver -- the main class:
|
||||
|
||||
|
||||
class Solver {
|
||||
public:
|
||||
|
||||
// Constructor/Destructor:
|
||||
//
|
||||
Solver();
|
||||
~Solver();
|
||||
|
||||
// Problem specification:
|
||||
//
|
||||
Var newVar (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
|
||||
bool addClause (vec<Lit>& ps); // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
|
||||
bool setminVars(vec<Lit>& ps);
|
||||
|
||||
// Solving:
|
||||
//
|
||||
bool simplify (); // Removes already satisfied clauses.
|
||||
bool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
|
||||
bool solve (); // Search without assumptions.
|
||||
bool okay () const; // FALSE means solver is in a conflicting state
|
||||
|
||||
// Variable mode:
|
||||
//
|
||||
void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
|
||||
void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
|
||||
|
||||
// Read state:
|
||||
//
|
||||
lbool value (Var x) const; // The current value of a variable.
|
||||
lbool value (Lit p) const; // The current value of a literal.
|
||||
lbool modelValue (Lit p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
|
||||
int nAssigns () const; // The current number of assigned literals.
|
||||
int nClauses () const; // The current number of original clauses.
|
||||
int nLearnts () const; // The current number of learnt clauses.
|
||||
int nVars () const; // The current number of variables.
|
||||
|
||||
// Extra results: (read-only member variable)
|
||||
//
|
||||
vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
|
||||
vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions),
|
||||
// this vector represent the final conflict clause expressed in the assumptions.
|
||||
|
||||
// Mode of operation:
|
||||
//
|
||||
double var_decay; // Inverse of the variable activity decay factor. (default 1 / 0.95)
|
||||
double clause_decay; // Inverse of the clause activity decay factor. (1 / 0.999)
|
||||
double random_var_freq; // The frequency with which the decision heuristic tries to choose a random variable. (default 0.02)
|
||||
int restart_first; // The initial restart limit. (default 100)
|
||||
double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
|
||||
double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
|
||||
double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
|
||||
bool expensive_ccmin; // Controls conflict clause minimization. (default TRUE)
|
||||
int polarity_mode; // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
|
||||
int verbosity; // Verbosity level. 0=silent, 1=some progress report (default 0)
|
||||
|
||||
enum { polarity_true = 0, polarity_false = 1, polarity_user = 2, polarity_rnd = 3 };
|
||||
|
||||
// Statistics: (read-only member variable)
|
||||
//
|
||||
uint64_t starts, decisions, rnd_decisions, propagations, conflicts;
|
||||
uint64_t clauses_literals, learnts_literals, max_literals, tot_literals;
|
||||
|
||||
protected:
|
||||
|
||||
// Helper structures:
|
||||
//
|
||||
struct VarOrderLt {
|
||||
const vec<double>& activity;
|
||||
bool operator () (Var x, Var y) const { return activity[x] > activity[y]; }
|
||||
VarOrderLt(const vec<double>& act) : activity(act) { }
|
||||
};
|
||||
|
||||
friend class VarFilter;
|
||||
struct VarFilter {
|
||||
const Solver& s;
|
||||
VarFilter(const Solver& _s) : s(_s) {}
|
||||
bool operator()(Var v) const { return toLbool(s.assigns[v]) == l_Undef && s.decision_var[v]; }
|
||||
};
|
||||
|
||||
// Solver state:
|
||||
//
|
||||
|
||||
//****************
|
||||
bool allMinVarsAssigned;
|
||||
int lastMinVarDL;
|
||||
vec<Lit> minVars;
|
||||
//****************
|
||||
|
||||
|
||||
bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
|
||||
vec<Clause*> clauses; // List of problem clauses.
|
||||
vec<Clause*> learnts; // List of learnt clauses.
|
||||
double cla_inc; // Amount to bump next clause with.
|
||||
vec<double> activity; // A heuristic measurement of the activity of a variable.
|
||||
double var_inc; // Amount to bump next variable with.
|
||||
vec<vec<Clause*> > watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
|
||||
vec<char> assigns; // The current assignments (lbool:s stored as char:s).
|
||||
vec<char> polarity; // The preferred polarity of each variable.
|
||||
vec<char> decision_var; // Declares if a variable is eligible for selection in the decision heuristic.
|
||||
vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
|
||||
vec<int> trail_lim; // Separator indices for different decision levels in 'trail'.
|
||||
vec<Clause*> reason; // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
|
||||
vec<int> level; // 'level[var]' contains the level at which the assignment was made.
|
||||
int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
|
||||
int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
|
||||
int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
|
||||
vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
|
||||
Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity.
|
||||
double random_seed; // Used by the random variable selection.
|
||||
double progress_estimate;// Set by 'search()'.
|
||||
bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
|
||||
|
||||
// Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
|
||||
// used, exept 'seen' wich is used in several places.
|
||||
//
|
||||
vec<char> seen;
|
||||
vec<Lit> analyze_stack;
|
||||
vec<Lit> analyze_toclear;
|
||||
vec<Lit> add_tmp;
|
||||
|
||||
// Main internal methods:
|
||||
//
|
||||
void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
|
||||
Lit pickBranchLit (int polarity_mode, double random_var_freq); // Return the next decision variable.
|
||||
void newDecisionLevel (); // Begins a new decision level.
|
||||
void uncheckedEnqueue (Lit p, Clause* from = NULL); // Enqueue a literal. Assumes value of literal is undefined.
|
||||
bool enqueue (Lit p, Clause* from = NULL); // Test if fact 'p' contradicts current state, enqueue otherwise.
|
||||
Clause* propagate (); // Perform unit propagation. Returns possibly conflicting clause.
|
||||
void cancelUntil (int level); // Backtrack until a certain level.
|
||||
void analyze (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
|
||||
void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
|
||||
bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()')
|
||||
lbool search (int nof_conflicts, int nof_learnts); // Search for a given number of conflicts.
|
||||
void reduceDB (); // Reduce the set of learnt clauses.
|
||||
void removeSatisfied (vec<Clause*>& cs); // Shrink 'cs' to contain only non-satisfied clauses.
|
||||
|
||||
// Maintaining Variable/Clause activity:
|
||||
//
|
||||
void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
|
||||
void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
|
||||
void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
|
||||
void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value.
|
||||
|
||||
// Operations on clauses:
|
||||
//
|
||||
void attachClause (Clause& c); // Attach a clause to watcher lists.
|
||||
void detachClause (Clause& c); // Detach a clause to watcher lists.
|
||||
void removeClause (Clause& c); // Detach and free a clause.
|
||||
bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
|
||||
bool satisfied (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
|
||||
|
||||
// Misc:
|
||||
//
|
||||
int decisionLevel () const; // Gives the current decisionlevel.
|
||||
uint32_t abstractLevel (Var x) const; // Used to represent an abstraction of sets of decision levels.
|
||||
double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
|
||||
|
||||
// Debug:
|
||||
void printLit (Lit l);
|
||||
template<class C>
|
||||
void printClause (const C& c);
|
||||
void verifyModel ();
|
||||
void checkLiteralCount();
|
||||
|
||||
// Static helpers:
|
||||
//
|
||||
|
||||
// Returns a random float 0 <= x < 1. Seed must never be 0.
|
||||
static inline double drand(double& seed) {
|
||||
seed *= 1389796;
|
||||
int q = (int)(seed / 2147483647);
|
||||
seed -= (double)q * 2147483647;
|
||||
return seed / 2147483647; }
|
||||
|
||||
// Returns a random integer 0 <= x < size. Seed must never be 0.
|
||||
static inline int irand(double& seed, int size) {
|
||||
return (int)(drand(seed) * size); }
|
||||
};
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
// Implementation of inline methods:
|
||||
|
||||
|
||||
inline void Solver::insertVarOrder(Var x) {
|
||||
if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x); }
|
||||
|
||||
inline void Solver::varDecayActivity() { var_inc *= var_decay; }
|
||||
inline void Solver::varBumpActivity(Var v) {
|
||||
if ( (activity[v] += var_inc) > 1e100 ) {
|
||||
// Rescale:
|
||||
for (int i = 0; i < nVars(); i++)
|
||||
activity[i] *= 1e-100;
|
||||
var_inc *= 1e-100; }
|
||||
|
||||
// Update order_heap with respect to new activity:
|
||||
if (order_heap.inHeap(v))
|
||||
order_heap.decrease(v); }
|
||||
|
||||
inline void Solver::claDecayActivity() { cla_inc *= clause_decay; }
|
||||
inline void Solver::claBumpActivity (Clause& c) {
|
||||
if ( (c.activity() += cla_inc) > 1e20 ) {
|
||||
// Rescale:
|
||||
for (int i = 0; i < learnts.size(); i++)
|
||||
learnts[i]->activity() *= 1e-20;
|
||||
cla_inc *= 1e-20; } }
|
||||
|
||||
inline bool Solver::enqueue (Lit p, Clause* from) { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); }
|
||||
inline bool Solver::locked (const Clause& c) const { return reason[var(c[0])] == &c && value(c[0]) == l_True; }
|
||||
inline void Solver::newDecisionLevel() { trail_lim.push(trail.size()); }
|
||||
|
||||
inline int Solver::decisionLevel () const { return trail_lim.size(); }
|
||||
inline uint32_t Solver::abstractLevel (Var x) const { return 1 << (level[x] & 31); }
|
||||
inline lbool Solver::value (Var x) const { return toLbool(assigns[x]); }
|
||||
inline lbool Solver::value (Lit p) const { return toLbool(assigns[var(p)]) ^ sign(p); }
|
||||
inline lbool Solver::modelValue (Lit p) const { return model[var(p)] ^ sign(p); }
|
||||
inline int Solver::nAssigns () const { return trail.size(); }
|
||||
inline int Solver::nClauses () const { return clauses.size(); }
|
||||
inline int Solver::nLearnts () const { return learnts.size(); }
|
||||
inline int Solver::nVars () const { return assigns.size(); }
|
||||
inline void Solver::setPolarity (Var v, bool b) { polarity [v] = (char)b; }
|
||||
inline void Solver::setDecisionVar(Var v, bool b) { decision_var[v] = (char)b; if (b) { insertVarOrder(v); } }
|
||||
inline bool Solver::solve () { vec<Lit> tmp; return solve(tmp); }
|
||||
inline bool Solver::okay () const { return ok; }
|
||||
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
// Debug + etc:
|
||||
|
||||
|
||||
#define reportf(...) ( fflush(stdout), fprintf(stderr, __VA_ARGS__), fflush(stderr) )
|
||||
|
||||
static inline void logLit(FILE* f, Lit l)
|
||||
{
|
||||
fprintf(f, "%sx%d", sign(l) ? "~" : "", var(l)+1);
|
||||
}
|
||||
|
||||
static inline void logLits(FILE* f, const vec<Lit>& ls)
|
||||
{
|
||||
fprintf(f, "[ ");
|
||||
if (ls.size() > 0){
|
||||
logLit(f, ls[0]);
|
||||
for (int i = 1; i < ls.size(); i++){
|
||||
fprintf(f, ", ");
|
||||
logLit(f, ls[i]);
|
||||
}
|
||||
}
|
||||
fprintf(f, "] ");
|
||||
}
|
||||
|
||||
static inline const char* showBool(bool b) { return b ? "true" : "false"; }
|
||||
|
||||
|
||||
// Just like 'assert()' but expression will be evaluated in the release version as well.
|
||||
static inline void check(bool expr) { assert(expr); }
|
||||
|
||||
|
||||
inline void Solver::printLit(Lit l)
|
||||
{
|
||||
reportf("%s%d:%c", sign(l) ? "-" : "", var(l)+1, value(l) == l_True ? '1' : (value(l) == l_False ? '0' : 'X'));
|
||||
}
|
||||
|
||||
|
||||
template<class C>
|
||||
inline void Solver::printClause(const C& c)
|
||||
{
|
||||
for (int i = 0; i < c.size(); i++){
|
||||
printLit(c[i]);
|
||||
fprintf(stderr, " ");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
#endif
|
@ -1,199 +0,0 @@
|
||||
/***********************************************************************************[SolverTypes.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
|
||||
#ifndef SolverTypes_h
|
||||
#define SolverTypes_h
|
||||
|
||||
#include <cassert>
|
||||
#include <stdint.h>
|
||||
|
||||
//=================================================================================================
|
||||
// Variables, literals, lifted booleans, clauses:
|
||||
|
||||
|
||||
// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
|
||||
// so that they can be used as array indices.
|
||||
|
||||
typedef int Var;
|
||||
#define var_Undef (-1)
|
||||
|
||||
|
||||
class Lit {
|
||||
int x;
|
||||
public:
|
||||
Lit() : x(2*var_Undef) { } // (lit_Undef)
|
||||
explicit Lit(Var var, bool sign = false) : x((var+var) + (int)sign) { }
|
||||
|
||||
// Don't use these for constructing/deconstructing literals. Use the normal constructors instead.
|
||||
friend int toInt (Lit p); // Guarantees small, positive integers suitable for array indexing.
|
||||
friend Lit toLit (int i); // Inverse of 'toInt()'
|
||||
friend Lit operator ~(Lit p);
|
||||
friend bool sign (Lit p);
|
||||
friend int var (Lit p);
|
||||
friend Lit unsign (Lit p);
|
||||
friend Lit id (Lit p, bool sgn);
|
||||
|
||||
bool operator == (Lit p) const { return x == p.x; }
|
||||
bool operator != (Lit p) const { return x != p.x; }
|
||||
bool operator < (Lit p) const { return x < p.x; } // '<' guarantees that p, ~p are adjacent in the ordering.
|
||||
};
|
||||
|
||||
inline int toInt (Lit p) { return p.x; }
|
||||
inline Lit toLit (int i) { Lit p; p.x = i; return p; }
|
||||
inline Lit operator ~(Lit p) { Lit q; q.x = p.x ^ 1; return q; }
|
||||
inline bool sign (Lit p) { return p.x & 1; }
|
||||
inline int var (Lit p) { return p.x >> 1; }
|
||||
inline Lit unsign (Lit p) { Lit q; q.x = p.x & ~1; return q; }
|
||||
inline Lit id (Lit p, bool sgn) { Lit q; q.x = p.x ^ (int)sgn; return q; }
|
||||
|
||||
const Lit lit_Undef(var_Undef, false); // }- Useful special constants.
|
||||
const Lit lit_Error(var_Undef, true ); // }
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
// Lifted booleans:
|
||||
|
||||
|
||||
class lbool {
|
||||
char value;
|
||||
explicit lbool(int v) : value(v) { }
|
||||
|
||||
public:
|
||||
lbool() : value(0) { }
|
||||
lbool(bool x) : value((int)x*2-1) { }
|
||||
int toInt(void) const { return value; }
|
||||
|
||||
bool operator == (lbool b) const { return value == b.value; }
|
||||
bool operator != (lbool b) const { return value != b.value; }
|
||||
lbool operator ^ (bool b) const { return b ? lbool(-value) : lbool(value); }
|
||||
|
||||
friend int toInt (lbool l);
|
||||
friend lbool toLbool(int v);
|
||||
};
|
||||
inline int toInt (lbool l) { return l.toInt(); }
|
||||
inline lbool toLbool(int v) { return lbool(v); }
|
||||
|
||||
const lbool l_True = toLbool( 1);
|
||||
const lbool l_False = toLbool(-1);
|
||||
const lbool l_Undef = toLbool( 0);
|
||||
|
||||
//=================================================================================================
|
||||
// Clause -- a simple class for representing a clause:
|
||||
|
||||
|
||||
class Clause {
|
||||
uint32_t size_etc;
|
||||
union { float act; uint32_t abst; } extra;
|
||||
Lit data[0];
|
||||
|
||||
public:
|
||||
void calcAbstraction() {
|
||||
uint32_t abstraction = 0;
|
||||
for (int i = 0; i < size(); i++)
|
||||
abstraction |= 1 << (var(data[i]) & 31);
|
||||
extra.abst = abstraction; }
|
||||
|
||||
// NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
|
||||
template<class V>
|
||||
Clause(const V& ps, bool learnt) {
|
||||
size_etc = (ps.size() << 3) | (uint32_t)learnt;
|
||||
for (int i = 0; i < ps.size(); i++) data[i] = ps[i];
|
||||
if (learnt) extra.act = 0; else calcAbstraction(); }
|
||||
|
||||
// -- use this function instead:
|
||||
template<class V>
|
||||
friend Clause* Clause_new(const V& ps, bool learnt);
|
||||
|
||||
int size () const { return size_etc >> 3; }
|
||||
void shrink (int i) { assert(i <= size()); size_etc = (((size_etc >> 3) - i) << 3) | (size_etc & 7); }
|
||||
void pop () { shrink(1); }
|
||||
bool learnt () const { return size_etc & 1; }
|
||||
uint32_t mark () const { return (size_etc >> 1) & 3; }
|
||||
void mark (uint32_t m) { size_etc = (size_etc & ~6) | ((m & 3) << 1); }
|
||||
const Lit& last () const { return data[size()-1]; }
|
||||
|
||||
// NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for
|
||||
// subsumption operations to behave correctly.
|
||||
Lit& operator [] (int i) { return data[i]; }
|
||||
Lit operator [] (int i) const { return data[i]; }
|
||||
operator const Lit* (void) const { return data; }
|
||||
|
||||
float& activity () { return extra.act; }
|
||||
uint32_t abstraction () const { return extra.abst; }
|
||||
|
||||
Lit subsumes (const Clause& other) const;
|
||||
void strengthen (Lit p);
|
||||
};
|
||||
|
||||
|
||||
template<class V>
|
||||
Clause* Clause_new(const V& ps, bool learnt) {
|
||||
assert(sizeof(Lit) == sizeof(uint32_t));
|
||||
assert(sizeof(float) == sizeof(uint32_t));
|
||||
void* mem = std::malloc(sizeof(Clause) + sizeof(uint32_t)*(ps.size()));
|
||||
return new (mem) Clause(ps, learnt); }
|
||||
/*_________________________________________________________________________________________________
|
||||
|
|
||||
| subsumes : (other : const Clause&) -> Lit
|
||||
|
|
||||
| Description:
|
||||
| Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other'
|
||||
| by subsumption resolution.
|
||||
|
|
||||
| Result:
|
||||
| lit_Error - No subsumption or simplification
|
||||
| lit_Undef - Clause subsumes 'other'
|
||||
| p - The literal p can be deleted from 'other'
|
||||
|________________________________________________________________________________________________@*/
|
||||
inline Lit Clause::subsumes(const Clause& other) const
|
||||
{
|
||||
if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0)
|
||||
return lit_Error;
|
||||
|
||||
Lit ret = lit_Undef;
|
||||
const Lit* c = (const Lit*)(*this);
|
||||
const Lit* d = (const Lit*)other;
|
||||
|
||||
for (int i = 0; i < size(); i++) {
|
||||
// search for c[i] or ~c[i]
|
||||
for (int j = 0; j < other.size(); j++)
|
||||
if (c[i] == d[j])
|
||||
goto ok;
|
||||
else if (ret == lit_Undef && c[i] == ~d[j]){
|
||||
ret = c[i];
|
||||
goto ok;
|
||||
}
|
||||
|
||||
// did not find it
|
||||
return lit_Error;
|
||||
ok:;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
inline void Clause::strengthen(Lit p)
|
||||
{
|
||||
remove(*this, p);
|
||||
calcAbstraction();
|
||||
}
|
||||
|
||||
#endif
|
@ -1,93 +0,0 @@
|
||||
/******************************************************************************************[Sort.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef Sort_h
|
||||
#define Sort_h
|
||||
|
||||
#include "Vec.h"
|
||||
|
||||
//=================================================================================================
|
||||
// Some sorting algorithms for vec's
|
||||
|
||||
|
||||
template<class T>
|
||||
struct LessThan_default {
|
||||
bool operator () (T x, T y) { return x < y; }
|
||||
};
|
||||
|
||||
|
||||
template <class T, class LessThan>
|
||||
void selectionSort(T* array, int size, LessThan lt)
|
||||
{
|
||||
int i, j, best_i;
|
||||
T tmp;
|
||||
|
||||
for (i = 0; i < size-1; i++){
|
||||
best_i = i;
|
||||
for (j = i+1; j < size; j++){
|
||||
if (lt(array[j], array[best_i]))
|
||||
best_i = j;
|
||||
}
|
||||
tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp;
|
||||
}
|
||||
}
|
||||
template <class T> static inline void selectionSort(T* array, int size) {
|
||||
selectionSort(array, size, LessThan_default<T>()); }
|
||||
|
||||
template <class T, class LessThan>
|
||||
void sort(T* array, int size, LessThan lt)
|
||||
{
|
||||
if (size <= 15)
|
||||
selectionSort(array, size, lt);
|
||||
|
||||
else{
|
||||
T pivot = array[size / 2];
|
||||
T tmp;
|
||||
int i = -1;
|
||||
int j = size;
|
||||
|
||||
for(;;){
|
||||
do i++; while(lt(array[i], pivot));
|
||||
do j--; while(lt(pivot, array[j]));
|
||||
|
||||
if (i >= j) break;
|
||||
|
||||
tmp = array[i]; array[i] = array[j]; array[j] = tmp;
|
||||
}
|
||||
|
||||
sort(array , i , lt);
|
||||
sort(&array[i], size-i, lt);
|
||||
}
|
||||
}
|
||||
template <class T> static inline void sort(T* array, int size) {
|
||||
sort(array, size, LessThan_default<T>()); }
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
// For 'vec's:
|
||||
|
||||
|
||||
template <class T, class LessThan> void sort(vec<T>& v, LessThan lt) {
|
||||
sort((T*)v, v.size(), lt); }
|
||||
template <class T> void sort(vec<T>& v) {
|
||||
sort(v, LessThan_default<T>()); }
|
||||
|
||||
|
||||
//=================================================================================================
|
||||
#endif
|
@ -1,133 +0,0 @@
|
||||
/*******************************************************************************************[Vec.h]
|
||||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
||||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
**************************************************************************************************/
|
||||
|
||||
#ifndef Vec_h
|
||||
#define Vec_h
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
#include <new>
|
||||
|
||||
//=================================================================================================
|
||||
// Automatically resizable arrays
|
||||
//
|
||||
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with std::realloc)
|
||||
|
||||
template<class T>
|
||||
class vec {
|
||||
T* data;
|
||||
int sz;
|
||||
int cap;
|
||||
|
||||
void init(int size, const T& pad);
|
||||
void grow(int min_cap);
|
||||
|
||||
// Don't allow copying (error prone):
|
||||
vec<T>& operator = (vec<T>& other) { assert(0); return *this; }
|
||||
vec (vec<T>& other) { assert(0); }
|
||||
|
||||
static inline int imin(int x, int y) {
|
||||
int mask = (x-y) >> (sizeof(int)*8-1);
|
||||
return (x&mask) + (y&(~mask)); }
|
||||
|
||||
static inline int imax(int x, int y) {
|
||||
int mask = (y-x) >> (sizeof(int)*8-1);
|
||||
return (x&mask) + (y&(~mask)); }
|
||||
|
||||
public:
|
||||
// Types:
|
||||
typedef int Key;
|
||||
typedef T Datum;
|
||||
|
||||
// Constructors:
|
||||
vec(void) : data(NULL) , sz(0) , cap(0) { }
|
||||
vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); }
|
||||
vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); }
|
||||
vec(T* array, int size) : data(array), sz(size), cap(size) { } // (takes ownership of array -- will be deallocated with 'free()')
|
||||
~vec(void) { clear(true); }
|
||||
|
||||
// Ownership of underlying array:
|
||||
T* release (void) { T* ret = data; data = NULL; sz = 0; cap = 0; return ret; }
|
||||
operator T* (void) { return data; } // (unsafe but convenient)
|
||||
operator const T* (void) const { return data; }
|
||||
|
||||
// Size operations:
|
||||
int size (void) const { return sz; }
|
||||
void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); }
|
||||
void shrink_(int nelems) { assert(nelems <= sz); sz -= nelems; }
|
||||
void pop (void) { sz--, data[sz].~T(); }
|
||||
void growTo (int size);
|
||||
void growTo (int size, const T& pad);
|
||||
void clear (bool dealloc = false);
|
||||
void capacity (int size) { grow(size); }
|
||||
|
||||
// Stack interface:
|
||||
#if 1
|
||||
void push (void) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)std::realloc(data, cap * sizeof(T)); } new (&data[sz]) T(); sz++; }
|
||||
//void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)std::realloc(data, cap * sizeof(T)); } new (&data[sz]) T(elem); sz++; }
|
||||
void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)std::realloc(data, cap * sizeof(T)); } data[sz++] = elem; }
|
||||
void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; }
|
||||
#else
|
||||
void push (void) { if (sz == cap) grow(sz+1); new (&data[sz]) T() ; sz++; }
|
||||
void push (const T& elem) { if (sz == cap) grow(sz+1); new (&data[sz]) T(elem); sz++; }
|
||||
#endif
|
||||
|
||||
const T& last (void) const { return data[sz-1]; }
|
||||
T& last (void) { return data[sz-1]; }
|
||||
|
||||
// Vector interface:
|
||||
const T& operator [] (int index) const { return data[index]; }
|
||||
T& operator [] (int index) { return data[index]; }
|
||||
|
||||
|
||||
// Duplicatation (preferred instead):
|
||||
void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) new (©[i]) T(data[i]); }
|
||||
void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
|
||||
};
|
||||
|
||||
template<class T>
|
||||
void vec<T>::grow(int min_cap) {
|
||||
if (min_cap <= cap) return;
|
||||
if (cap == 0) cap = (min_cap >= 2) ? min_cap : 2;
|
||||
else do cap = (cap*3+1) >> 1; while (cap < min_cap);
|
||||
data = (T*)std::realloc(data, cap * sizeof(T)); }
|
||||
|
||||
template<class T>
|
||||
void vec<T>::growTo(int size, const T& pad) {
|
||||
if (sz >= size) return;
|
||||
grow(size);
|
||||
for (int i = sz; i < size; i++) new (&data[i]) T(pad);
|
||||
sz = size; }
|
||||
|
||||
template<class T>
|
||||
void vec<T>::growTo(int size) {
|
||||
if (sz >= size) return;
|
||||
grow(size);
|
||||
for (int i = sz; i < size; i++) new (&data[i]) T();
|
||||
sz = size; }
|
||||
|
||||
template<class T>
|
||||
void vec<T>::clear(bool dealloc) {
|
||||
if (data != NULL){
|
||||
for (int i = 0; i < sz; i++) data[i].~T();
|
||||
sz = 0;
|
||||
if (dealloc) std::free(data), data = NULL, cap = 0; } }
|
||||
|
||||
|
||||
#endif
|
@ -1,175 +0,0 @@
|
||||
//#include <SWI-Stream.h>
|
||||
#include <SWI-Prolog.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "Solver.h"
|
||||
|
||||
#define val(i) ((s->model[i] != l_Undef) ? ((s->model[i]==l_True)? i+1:-1*(i+1)):0)
|
||||
|
||||
Solver *s = NULL;
|
||||
|
||||
|
||||
extern "C" foreign_t minisat_new_solver()
|
||||
{
|
||||
s = new Solver;
|
||||
PL_succeed;
|
||||
}
|
||||
|
||||
|
||||
extern "C" foreign_t minisat_delete_solver()
|
||||
{
|
||||
if (s) {
|
||||
delete s;
|
||||
s = NULL;
|
||||
}
|
||||
PL_succeed;
|
||||
}
|
||||
|
||||
static inline Lit pl2lit(term_t pl_literal)
|
||||
{
|
||||
int pl_lit_int, var;
|
||||
PL_get_integer(pl_literal,&pl_lit_int);
|
||||
var = abs(pl_lit_int)-1;
|
||||
while (var >= s->nVars()) s->newVar();
|
||||
return (pl_lit_int > 0) ? Lit(var) : ~Lit(var);
|
||||
}
|
||||
|
||||
|
||||
extern "C" foreign_t minisat_set_minvars(term_t l)
|
||||
{
|
||||
term_t head = PL_new_term_ref(); /* variable for the elements */
|
||||
term_t list = PL_copy_term_ref(l); /* copy as we need to write */
|
||||
|
||||
vec<Lit> lits;
|
||||
|
||||
while( PL_get_list(list, head, list) ) {
|
||||
lits.push( pl2lit(head) );
|
||||
}
|
||||
|
||||
assert(PL_get_nil(list));
|
||||
|
||||
if (s->setminVars(lits)) PL_succeed; else PL_fail;
|
||||
}
|
||||
|
||||
extern "C" foreign_t minisat_add_clause(term_t l)
|
||||
{
|
||||
term_t head = PL_new_term_ref(); /* variable for the elements */
|
||||
term_t list = PL_copy_term_ref(l); /* copy as we need to write */
|
||||
|
||||
vec<Lit> lits;
|
||||
|
||||
while( PL_get_list(list, head, list) ) {
|
||||
lits.push( pl2lit(head) );
|
||||
}
|
||||
|
||||
assert(PL_get_nil(list));
|
||||
|
||||
if (s->addClause(lits)) PL_succeed; else PL_fail;
|
||||
}
|
||||
|
||||
|
||||
extern "C" foreign_t minisat_solve(term_t assum) {
|
||||
|
||||
term_t head = PL_new_term_ref(); /* variable for the elements */
|
||||
term_t list = PL_copy_term_ref(assum); /* copy as we need to write */
|
||||
|
||||
vec<Lit> assumptions;
|
||||
|
||||
while( PL_get_list(list, head, list) ) {
|
||||
assumptions.push( pl2lit(head) );
|
||||
}
|
||||
|
||||
if (s->solve(assumptions)) PL_succeed; else PL_fail;
|
||||
}
|
||||
|
||||
|
||||
extern "C" foreign_t minisat_get_var_assignment(term_t var, term_t res)
|
||||
{
|
||||
int i;
|
||||
|
||||
PL_get_integer(var,&i);
|
||||
i--;
|
||||
|
||||
if (i < s->nVars()) {
|
||||
term_t a = PL_new_term_ref(); /* variable for the elements */
|
||||
PL_put_integer(a, val(i));
|
||||
return PL_unify(a,res);
|
||||
} else {
|
||||
PL_fail;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" foreign_t minisat_nvars(term_t res)
|
||||
{
|
||||
term_t a = PL_new_term_ref(); /* variable for the elements */
|
||||
PL_put_integer(a, s->nVars());
|
||||
return PL_unify(a,res);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//=============================================================================
|
||||
static const PL_extension predicates[] =
|
||||
{
|
||||
//
|
||||
// { "name", arity, function, PL_FA_<flags> },
|
||||
//
|
||||
|
||||
{ "minisat_new_solver", 0, (void*)minisat_new_solver, 0 },
|
||||
{ "minisat_delete_solver", 0, (void*)minisat_delete_solver, 0 },
|
||||
{ "minisat_add_clause", 1, (void*)minisat_add_clause, 0 },
|
||||
{ "minisat_solve", 1, (void*)minisat_solve, 0 },
|
||||
{ "minisat_get_var_assignment", 2, (void*)minisat_get_var_assignment, 0 },
|
||||
{ "minisat_nvars", 1, (void*)minisat_nvars, 0 },
|
||||
{ NULL, 0, NULL, 0 } // terminating line
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
extern "C" install_t install()
|
||||
{
|
||||
//Sdprintf("%% SWI-Prolog interface to MiniSat");
|
||||
//Sdprintf(" - built on ");
|
||||
//Sdprintf(__DATE__);
|
||||
//Sdprintf(", ");
|
||||
//Sdprintf(__TIME__);
|
||||
//Sdprintf(" ... ");
|
||||
PL_register_extensions(predicates); /* This is the only PL_ call allowed */
|
||||
/* before PL_initialise(). It */
|
||||
/* ensures the foreign predicates */
|
||||
/* are available before loading */
|
||||
/* Prolog code */
|
||||
|
||||
//Sdprintf("OK\n");
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// This part is for compiling into a standalone executable
|
||||
|
||||
#ifdef READLINE
|
||||
static void install_readline(int argc, char**argv)
|
||||
{
|
||||
PL_install_readline();
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
#ifdef READLINE
|
||||
PL_initialise_hook(install_readline);
|
||||
#endif
|
||||
|
||||
install();
|
||||
if ( !PL_initialise(argc, argv) )
|
||||
PL_halt(1);
|
||||
|
||||
PL_halt(PL_toplevel() ? 0 : 1);
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,18 +0,0 @@
|
||||
|
||||
set (PROGRAMS
|
||||
cnf.pl
|
||||
minisat.pl
|
||||
)
|
||||
|
||||
set (EXAMPLE_PROGRAMS
|
||||
examples/adder.pl
|
||||
examples/pearl_examples.pl
|
||||
)
|
||||
|
||||
install(FILES
|
||||
${PROGRAMS}
|
||||
DESTINATION ${YAP_INSTALL_DATADIR}
|
||||
)
|
||||
|
||||
add_subDIRECTORY (C)
|
||||
|
@ -1,51 +0,0 @@
|
||||
#
|
||||
# default base directory for YAP installation
|
||||
#
|
||||
#
|
||||
ROOTDIR = @prefix@
|
||||
#
|
||||
# where the binary should be
|
||||
#
|
||||
BINDIR = $(ROOTDIR)/bin
|
||||
#
|
||||
# where YAP should look for binary libraries
|
||||
#
|
||||
LIBDIR=@libdir@
|
||||
YAPLIBDIR=@libdir@/Yap
|
||||
#
|
||||
# where YAP should look for architecture-independent Prolog libraries
|
||||
#
|
||||
SHAREDIR=$(ROOTDIR)/share
|
||||
#
|
||||
#
|
||||
# You shouldn't need to change what follows.
|
||||
#
|
||||
INSTALL=@INSTALL@
|
||||
INSTALL_DATA=@INSTALL_DATA@
|
||||
INSTALL_PROGRAM=@INSTALL_PROGRAM@
|
||||
srcdir=@srcdir@
|
||||
YAP_EXTRAS=@YAP_EXTRAS@
|
||||
|
||||
PROGRAMS= \
|
||||
$(srcdir)/cnf.pl \
|
||||
$(srcdir)/minisat.pl
|
||||
|
||||
EXAMPLE_PROGRAMS= \
|
||||
$(srcdir)/examples/adder.pl \
|
||||
$(srcdir)/examples/pearl_examples.pl
|
||||
|
||||
all:
|
||||
|
||||
install: $(PROGRAMS) install-examples
|
||||
mkdir -p $(DESTDIR)$(SHAREDIR)/Yap
|
||||
mkdir -p $(DESTDIR)$(SHAREDIR)/doc/Yap/packages/examples/minisat
|
||||
for p in $(PROGRAMS); do $(INSTALL_DATA) $$p $(DESTDIR)$(SHAREDIR)/Yap; done
|
||||
for p in $(EXAMPLE_PROGRAMS); do $(INSTALL_DATA) $$p $(DESTDIR)$(SHAREDIR)/doc/Yap/packages/examples/minisat; done
|
||||
|
||||
install-examples:
|
||||
|
||||
clean:
|
||||
|
||||
distclean:
|
||||
rm Makefile
|
||||
|
@ -1,8 +0,0 @@
|
||||
You need to put the file swi-minisat2.tgz in a directory where you want
|
||||
the solver and the interface and then do:
|
||||
|
||||
% tar zxvf swi-minisat2.tgz
|
||||
% ./configure.sh
|
||||
% make
|
||||
% make clean
|
||||
|
@ -1,13 +0,0 @@
|
||||
This is the minisat package as described in
|
||||
|
||||
Michael Codish, Vitaly Lagoon, Peter J. Stuckey: Logic programming
|
||||
with satisfiability. TPLP 8(1): 121-128 (2008)
|
||||
|
||||
We thank the authors for kindly allowing us to use this package in YAP.
|
||||
|
||||
Please check the examples in $install/share/Yap/minisat/examples and
|
||||
the TPLP paper to understand how the system can be used.
|
||||
|
||||
Last, please contact yap-users AT sf.net for any bugs first, as they
|
||||
may have been caused by the YAP port.
|
||||
|
@ -1,100 +0,0 @@
|
||||
%%============================================================================
|
||||
%% CNF.pl
|
||||
%% Convertor of Boolean formulae to CNF
|
||||
%% Copyright (c) 2006, Michael Codish, Vitaly Lagoon, and Peter J. Stuckey
|
||||
%%
|
||||
%% Permission is hereby granted, free of charge, to any person obtaining a
|
||||
%% copy of this software and associated documentation files (the
|
||||
%% "Software"), to deal in the Software without restriction, including
|
||||
%% without limitation the rights to use, copy, modify, merge, publish,
|
||||
%% distribute, sublicense, and/or sell copies of the Software, and to
|
||||
%% permit persons to whom the Software is furnished to do so, subject to
|
||||
%% the following conditions:
|
||||
%%
|
||||
%% The above copyright notice and this permission notice shall be included
|
||||
%% in all copies or substantial portions of the Software.
|
||||
%%
|
||||
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
%% OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
%% MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
%% NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
%% LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
%% OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
%% WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
:- module(cnf,[cnf/2,cnf_dl/2]).
|
||||
|
||||
cnf(F,Cnf) :- cnf_dl(F,Cnf-[]).
|
||||
|
||||
cnf_dl(F,[[B]|Cnf1]-Cnf2) :- iff(F,+,B,Cnf2,Cnf1).
|
||||
|
||||
|
||||
iff(V,_,B,Acc,Cnf) :- var(V), !, V=B, Cnf=Acc.
|
||||
iff(1,_,B,Acc,Cnf) :- !, B=1, Cnf=Acc.
|
||||
iff(0,_,B,Acc,Cnf) :- !, B=0, Cnf=Acc.
|
||||
|
||||
iff(-X,+,B,Acc,Cnf) :- !, iff(X,-,BX,Acc,Cnf), neglit(BX,B).
|
||||
iff(-X,-,B,Acc,Cnf) :- !, iff(X,+,BX,Acc,Cnf), neglit(BX,B).
|
||||
iff(-X,*,B,Acc,Cnf) :- !, iff(X,*,BX,Acc,Cnf), neglit(BX,B).
|
||||
|
||||
iff((X+Y),Polarity,B,Acc,Cnf) :- !,
|
||||
iff(X,Polarity,BX,Acc,AccX),
|
||||
iff(Y,Polarity,BY,AccX,AccXY),
|
||||
(
|
||||
Polarity == + -> Cnf = [[-B,BX,BY]|AccXY]
|
||||
;
|
||||
Polarity == - -> Cnf = [[B,-BX],[B,-BY]|AccXY]
|
||||
;
|
||||
Cnf = [[-B,BX,BY], [B,-BX], [B,-BY] | AccXY]
|
||||
).
|
||||
|
||||
iff((X*Y),Polarity,B,Acc,Cnf) :- !,
|
||||
iff(X,Polarity,BX,Acc,AccX),
|
||||
iff(Y,Polarity,BY,AccX,AccXY),
|
||||
(
|
||||
Polarity == + -> Cnf = [[-B,BX],[-B,BY]|AccXY]
|
||||
;
|
||||
Polarity == - -> Cnf = [[B,-BX,-BY]|AccXY]
|
||||
;
|
||||
Cnf = [[B,-BX,-BY], [-B,BX], [-B,BY] | AccXY]
|
||||
).
|
||||
|
||||
iff((X==Y),Polarity,B,Acc,Cnf) :- !,
|
||||
iff(X,*,BX,Acc,AccX),
|
||||
iff(Y,*,BY,AccX,AccXY),
|
||||
(
|
||||
Polarity == + -> Cnf = [[-BX,BY,-B],[BX,-BY,-B] | AccXY]
|
||||
;
|
||||
Polarity == - -> Cnf = [[-BX,-BY,B],[BX,BY,B] | AccXY]
|
||||
;
|
||||
Cnf = [[-BX,BY,-B],[BX,-BY,-B],[-BX,-BY,B],[BX,BY,B] | AccXY]
|
||||
).
|
||||
|
||||
iff((xor(X, Y)),Polarity,B,Acc,Cnf) :- !,
|
||||
iff(X,*,BX,Acc,AccX),
|
||||
iff(Y,*,BY,AccX,AccXY),
|
||||
(
|
||||
Polarity == + -> Cnf = [[-BX,-BY,-B],[BX,BY,-B] | AccXY]
|
||||
;
|
||||
Polarity == - -> Cnf = [[-BX,BY,B],[BX,-BY,B] | AccXY]
|
||||
;
|
||||
Cnf = [[-BX,BY,B],[BX,-BY,B],[-BX,-BY,-B],[BX,BY,-B] | AccXY]
|
||||
).
|
||||
|
||||
iff((X->Y;Z),Polarity,B,Acc,Cnf) :- !,
|
||||
iff(X,*,BX,Acc,AccX),
|
||||
iff(Y,Polarity,BY,AccX,AccXY),
|
||||
iff(Z,Polarity,BZ,AccXY,AccXYZ),
|
||||
(
|
||||
Polarity == + -> Cnf = [[-BX,BY,-B],[BX,BZ,-B],[BY,BZ,-B]|AccXYZ]
|
||||
;
|
||||
Polarity == - -> Cnf = [[-BX,-BY,B],[BX,-BZ,B],[-BY,-BZ,B]|AccXYZ]
|
||||
;
|
||||
Cnf = [[-BX,BY,-B], [BX,BZ,-B], [BY,BZ,-B],
|
||||
[-BX,-BY,B], [BX,-BZ,B], [-BY,-BZ,B] | AccXYZ]
|
||||
).
|
||||
|
||||
neglit(V,-V) :- var(V), !.
|
||||
neglit(-V,V).
|
||||
neglit(0,1).
|
||||
neglit(1,0).
|
@ -1,23 +0,0 @@
|
||||
:- module(adder,[sum/3]).
|
||||
|
||||
sum([B],[S],(S==B)).
|
||||
sum([B1,B2|Bs],Sum,F1*F2*F3) :-
|
||||
split([B1,B2|Bs],Xs,Ys),
|
||||
sum(Xs,S1,F1), sum(Ys,S2,F2),add(S1,S2,Sum,F3).
|
||||
|
||||
split([],[],[]).
|
||||
split([X],[X],[0]).
|
||||
split([X,Y|XYs],[X|Xs],[Y|Ys]) :- split(XYs,Xs,Ys).
|
||||
|
||||
add([X|Xs],[Y|Ys],[Z|Zs],(Z==SumXY)*Sum) :-
|
||||
halfadder(X,Y,SumXY,CarryXY),
|
||||
adder(Xs,Ys,CarryXY,Zs,Sum).
|
||||
|
||||
adder([],[],Carry,[Z],Z==Carry).
|
||||
adder([X|Xs],[Y|Ys],Carry,[Z|Zs],(Z==SumXY)*Rest) :-
|
||||
fulladder(X,Y,Carry,SumXY,CarryXY),
|
||||
adder(Xs,Ys,CarryXY,Zs,Rest).
|
||||
|
||||
fulladder(X, Y, C, (X xor Y xor C), (C->(X+Y);(X*Y)) ).
|
||||
halfadder(X, Y, (X xor Y), X*Y ).
|
||||
|
@ -1,54 +0,0 @@
|
||||
|
||||
:- use_module(library(cnf)).
|
||||
:- use_module(library(minisat)).
|
||||
:- use_module(adder).
|
||||
|
||||
%% Example, pg3
|
||||
%%
|
||||
%% ?- cnf(X==Y,Cnf).
|
||||
%% Cnf = [[T], [-X, Y, -T], [X, -Y, -T]]
|
||||
%% ?- cnf((X*Y)+(-X*Z),Cnf).
|
||||
%% Cnf = [[T], [-T, T1, T2], [-T2, -X],
|
||||
%% [-T2, Z], [-T1, X], [-T1, Y]]
|
||||
|
||||
|
||||
%% Example, pg4
|
||||
%%
|
||||
%% ?- sum([X+Y,X*Y,X==Y,X xor Y],[S1,S2,S3],Psi).
|
||||
%% Psi = (T1==X+Y)*(T2==(X==Y))*(T3==T1 xor T2)*(T4==T1*T2)*(T5==X*Y)*
|
||||
%% (T6==X xor Y)*(T7==T5 xor T6)* (T8==T5*T6)*(S1==T3 xor T7)*
|
||||
%% (S2==T4 xor T8 xor (T3*T7))* (S3==(T3*T7->T4+T8;T4*T8))
|
||||
|
||||
|
||||
%% Examples, pg6
|
||||
%%
|
||||
%% ?- cnf(X==Y,Cnf), solve(Cnf).
|
||||
%% X=0, Y=0
|
||||
%%
|
||||
%% ?- cnf(X==Y,Cnf), sat(Cnf).
|
||||
%% Yes
|
||||
%%
|
||||
%% ?- sum([X+Y,X*Y,X==Y,X xor Y],Sum,F), cnf(F,Cnf), solve(Cnf).
|
||||
%% X = 0, Y = 0
|
||||
%% Sum = [1, 0, 0]
|
||||
%%
|
||||
%% ?- sum([X+Y,X*Y,X==Y,X xor Y],[0,1,0],F), cnf(F,Cnf), solve(Cnf).
|
||||
%% X = 0, Y = 1
|
||||
%%
|
||||
%% ?- sum([X+Y,X*Y,X==Y,X xor Y],Sum,F), cnf(F,Cnf),
|
||||
%% maximize(Sum,Cnf), solve(Cnf).
|
||||
%% Sum=[1,1,0]
|
||||
%% X=1, Y=1
|
||||
|
||||
|
||||
%% Figure 3, pg 6
|
||||
%%
|
||||
%% partialMaxSat(+,+).
|
||||
partialMaxSat(Phi,Psi) :-
|
||||
sum(Psi,Max,SumPsi), cnf(Phi*SumPsi,Cnf),
|
||||
maximize(Max,Cnf), solve(Cnf).
|
||||
|
||||
%% Example, pg 7
|
||||
%%
|
||||
%% ?- partialMaxSat(X+Y,[X*Y,X==Y,X xor Y,-X+Y, -X, -Y, X]).
|
||||
%% X = 1, Y = 1
|
@ -1,361 +0,0 @@
|
||||
%%============================================================================
|
||||
%% The SWI-Prolog interface to MiniSat SAT solver
|
||||
%% http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html
|
||||
%%
|
||||
%% Copyright (c) 2006, Michael Codish, Vitaly Lagoon, and Peter J. Stuckey
|
||||
%%
|
||||
%% Permission is hereby granted, free of charge, to any person obtaining a
|
||||
%% copy of this software and associated documentation files (the
|
||||
%% "Software"), to deal in the Software without restriction, including
|
||||
%% without limitation the rights to use, copy, modify, merge, publish,
|
||||
%% distribute, sublicense, and/or sell copies of the Software, and to
|
||||
%% permit persons to whom the Software is furnished to do so, subject to
|
||||
%% the following conditions:
|
||||
%%
|
||||
%% The above copyright notice and this permission notice shall be included
|
||||
%% in all copies or substantial portions of the Software.
|
||||
%%
|
||||
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
%% OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
%% MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
%% NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
%% LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
%% OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
%% WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
:- module(minisat,[
|
||||
solve/1,
|
||||
sat/1,
|
||||
sat_init/0,
|
||||
sat_deinit/0,
|
||||
sat_add_clauses/3,
|
||||
sat_solve/1,
|
||||
|
||||
minimize/2,
|
||||
maximize/2,
|
||||
minimize_v1/2,
|
||||
maximize_v1/2,
|
||||
minimize_v2/2,
|
||||
maximize_v2/2,
|
||||
minimize_v3/2,
|
||||
maximize_v3/2
|
||||
]).
|
||||
|
||||
:- use_module(library(shlib)).
|
||||
|
||||
:- use_module(library(lists)).
|
||||
|
||||
:- load_foreign_library('pl-minisat',install).
|
||||
|
||||
:- dynamic tmp/1.
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
sat_init :-
|
||||
minisat_new_solver, % - create the new solve
|
||||
minisat_add_clause([-1]), % - add zero
|
||||
minisat_add_clause([2]). % - add one
|
||||
|
||||
%%
|
||||
%%
|
||||
sat_deinit :-
|
||||
minisat_delete_solver.
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
sat_add_clauses(Cs, Vs, MiniSat_Vs) :-
|
||||
term_variables(Cs,CsVars),
|
||||
\+ \+ (
|
||||
bind2index(CsVars),
|
||||
add_cnf_clauses(Cs),
|
||||
asserta(tmp(Vs))
|
||||
),
|
||||
retract(tmp(MiniSat_Vs)).
|
||||
|
||||
add_cnf_clauses([]).
|
||||
add_cnf_clauses([Cl|Cls]) :-
|
||||
to_minisat(Cl,MiniSatCl),
|
||||
minisat_add_clause(MiniSatCl),
|
||||
add_cnf_clauses(Cls).
|
||||
|
||||
to_minisat([],[]).
|
||||
to_minisat([L|Ls],[N|Ns]) :-
|
||||
minisat_aux(L,N),
|
||||
to_minisat(Ls,Ns).
|
||||
|
||||
minisat_aux(0,1) :- !.
|
||||
minisat_aux(1,2) :- !.
|
||||
minisat_aux(-(1),1) :- !.
|
||||
minisat_aux(-(0),2) :- !.
|
||||
minisat_aux(N,NN) :- NN is N.
|
||||
|
||||
|
||||
bind2index(Vs) :-
|
||||
minisat_nvars(N),
|
||||
N1 is N+1,
|
||||
bind2index_aux(Vs,N1).
|
||||
|
||||
bind2index_aux([],_N).
|
||||
bind2index_aux([V|Ns],N) :-
|
||||
var(V),
|
||||
!,
|
||||
V=N,
|
||||
N1 is N+1, bind2index_aux(Ns,N1).
|
||||
bind2index_aux([V|Ns],N) :-
|
||||
integer(V),
|
||||
bind2index_aux(Ns,N).
|
||||
|
||||
%%
|
||||
%%
|
||||
sat_solve(As) :-
|
||||
to_minisat(As,MINISAT_As),
|
||||
minisat_solve(MINISAT_As).
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
sat_get_values([],[]).
|
||||
sat_get_values([SAT_V|SVs],[PL_V|PL_Vs]) :-
|
||||
minisat_get_var_assignment(SAT_V,N),
|
||||
( N<0 -> PL_V=0 ; PL_V=1),
|
||||
sat_get_values(SVs,PL_Vs).
|
||||
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%% sat(+CNF): succeds if CNF is satisfaiable, it does not bind the variables in CNF
|
||||
%%
|
||||
|
||||
sat(CNF) :-
|
||||
sat_init,
|
||||
sat_add_clauses(CNF,_,_),
|
||||
sat_solve([]),
|
||||
sat_deinit,
|
||||
!.
|
||||
sat(_CNF) :-
|
||||
sat_deinit,
|
||||
!,
|
||||
fail.
|
||||
|
||||
|
||||
%%
|
||||
%% solve(+CNF): like CNF/1 but bind the variables of CNF to the solution
|
||||
%%
|
||||
solve(CNF) :-
|
||||
sat_init,
|
||||
term_variables(CNF,CNF_Vs),
|
||||
sat_add_clauses(CNF,CNF_Vs,SAT_Vs),
|
||||
sat_solve([]),
|
||||
sat_get_values(SAT_Vs,CNF_Vs),
|
||||
sat_deinit,
|
||||
!.
|
||||
solve(_) :-
|
||||
sat_deinit,
|
||||
!,
|
||||
fail.
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
%%
|
||||
minimize(Vec,CNF) :- minimize_v1(Vec,CNF).
|
||||
maximize(Vec,CNF) :- maximize_v1(Vec,CNF).
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
minimize_v1(Vec,CNF) :-
|
||||
minimize_v1_aux(Vec,CNF),
|
||||
sat(CNF).
|
||||
|
||||
minimize_v1_aux([],_CNF).
|
||||
minimize_v1_aux([B|Bs],CNF) :-
|
||||
minimize_v1_aux(Bs,CNF),
|
||||
( (B=0, sat(CNF)) -> true ; B=1 ).
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
maximize_v1(Vec,CNF) :-
|
||||
maximize_v1_aux(Vec,CNF),
|
||||
sat(CNF).
|
||||
|
||||
maximize_v1_aux([],_CNF).
|
||||
maximize_v1_aux([B|Bs],CNF) :-
|
||||
maximize_v1_aux(Bs,CNF),
|
||||
( (B=1, sat(CNF)) -> true ; B=0 ).
|
||||
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
minimize_v2(Vec,CNF) :-
|
||||
retractall(tmp(_)),
|
||||
reverse(Vec,Vec_MSB),
|
||||
term_variables(CNF,CNF_Vars),
|
||||
sat_init,
|
||||
sat_add_clauses(CNF,[Vec_MSB,CNF_Vars],[Vec_MSB_SVars,CNF_SVars]),
|
||||
minimize_v2_loop(Vec_MSB_SVars),
|
||||
sat_get_values(CNF_SVars,CNF_Vars),
|
||||
sat_deinit,
|
||||
!.
|
||||
|
||||
minimize_v2_loop([]) :-
|
||||
sat_solve([]).
|
||||
minimize_v2_loop([V|Vs]) :-
|
||||
( sat_solve([-V]) ->
|
||||
eliminate_prefix(Vs,0,New_Vs)
|
||||
;
|
||||
sat_add_clauses([[V]],_,_),
|
||||
New_Vs=Vs
|
||||
),
|
||||
minimize_v2_loop(New_Vs).
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
maximize_v2(Vec,CNF) :-
|
||||
reverse(Vec,Vec_MSB),
|
||||
term_variables(CNF,CNF_Vars),
|
||||
sat_init,
|
||||
sat_add_clauses(CNF,[Vec_MSB,CNF_Vars],[Vec_MSB_SVars,CNF_SVars]),
|
||||
maximize_v2_loop(Vec_MSB_SVars),
|
||||
sat_get_values(CNF_SVars,CNF_Vars),
|
||||
sat_deinit,
|
||||
!.
|
||||
|
||||
maximize_v2_loop([]) :-
|
||||
sat_solve([]).
|
||||
maximize_v2_loop([V|Vs]) :-
|
||||
( sat_solve([V]) ->
|
||||
eliminate_prefix(Vs,1,New_Vs)
|
||||
;
|
||||
sat_add_clauses([[V]],_,_),
|
||||
New_Vs=Vs
|
||||
),
|
||||
maximize_v2_loop(New_Vs).
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
minimize_v3(Vec,CNF) :-
|
||||
retractall(tmp(_)),
|
||||
term_variables(CNF,CNF_Vars),
|
||||
sat_init,
|
||||
sat_add_clauses(CNF,[Vec,CNF_Vars],[Vec_SVars,CNF_SVars]),
|
||||
sat_solve([]),
|
||||
sat_get_values(Vec_SVars,Curr_Min),
|
||||
sat_get_values(CNF_SVars,Curr_Sol),
|
||||
minimize_v3_loop(Vec_SVars,CNF_SVars,Curr_Min,Curr_Sol,Vec,CNF_Vars),
|
||||
minisat_delete_solver,
|
||||
!.
|
||||
|
||||
minimize_v3_loop(Vec,CNF_SVars,Last_Min,_Last_Sol,Final_Min,Final_Sol) :-
|
||||
xs_gt_ys(Last_Min,Vec,CNF-[]),
|
||||
sat_add_clauses(CNF,_,_),
|
||||
sat_solve([]),
|
||||
sat_get_values(Vec,Curr_Min),
|
||||
sat_get_values(CNF_SVars,Curr_Sol),
|
||||
!,
|
||||
minimize_v3_loop(Vec,CNF_SVars,Curr_Min,Curr_Sol,Final_Min,Final_Sol).
|
||||
minimize_v3_loop(_Vec,_CNF_SVars,Final_Min,Final_Sol,Final_Min,Final_Sol) :-
|
||||
!.
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
maximize_v3(Vec,CNF) :-
|
||||
retractall(tmp(_)),
|
||||
term_variables(CNF,CNF_Vars),
|
||||
sat_init,
|
||||
sat_add_clauses(CNF,[Vec,CNF_Vars],[Vec_SVars,CNF_SVars]),
|
||||
sat_solve([]),
|
||||
sat_get_values(Vec_SVars,Curr_Max),
|
||||
sat_get_values(CNF_SVars,Curr_Sol),
|
||||
maximize_v3_loop(Vec_SVars,CNF_SVars,Curr_Max,Curr_Sol,Vec,CNF_Vars),
|
||||
minisat_delete_solver,
|
||||
!.
|
||||
|
||||
maximize_v3_loop(Vec,CNF_SVars,Last_Max,_Last_Sol,Final_Max,Final_Sol) :-
|
||||
xs_gt_ys(Vec,Last_Max,CNF-[]),
|
||||
sat_add_clauses(CNF,_,_),
|
||||
sat_solve([]),
|
||||
sat_get_values(Vec,Curr_Max),
|
||||
sat_get_values(CNF_SVars,Curr_Sol),
|
||||
!,
|
||||
maximize_v3_loop(Vec,CNF_SVars,Curr_Max,Curr_Sol,Final_Max,Final_Sol).
|
||||
maximize_v3_loop(_Vec,_CNF_SVars,Final_Max,Final_Sol,Final_Max,Final_Sol) :-
|
||||
!.
|
||||
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
eliminate_prefix([],_Bit,[]) :- !.
|
||||
eliminate_prefix([V|Vs],Bit,New_Vs) :-
|
||||
sat_get_values([V],[VVal]),
|
||||
VVal = Bit,
|
||||
( Bit = 0 -> sat_add_clauses([[-V]],_,_) ; sat_add_clauses([[V]],_,_) ),
|
||||
!,
|
||||
eliminate_prefix(Vs,Bit,New_Vs).
|
||||
eliminate_prefix(Vs,Vs).
|
||||
|
||||
|
||||
|
||||
%%
|
||||
%%
|
||||
% B == (Xs = Ys)
|
||||
xs_eq_ys([X],[Y],B,Cnf1-Cnf2) :-
|
||||
!,
|
||||
eq(X,Y,B,Cnf1-Cnf2).
|
||||
xs_eq_ys([X|Xs],[Y|Ys],B,Cnf1-Cnf4) :-
|
||||
eq(X,Y,B1,Cnf1-Cnf2),
|
||||
xs_eq_ys(Xs,Ys,B2,Cnf2-Cnf3),
|
||||
and(B1,B2,B,Cnf3-Cnf4).
|
||||
|
||||
%%
|
||||
xs_gt_ys(Xs,Ys,[[B]|Cnf1]-Cnf2) :-
|
||||
xs_gt_ys(Xs,Ys,B,Cnf1-Cnf2).
|
||||
|
||||
%%
|
||||
%%
|
||||
xs_gt_ys([X],[Y],B,Cnf1-Cnf2) :- !,
|
||||
gt(X,Y,B,Cnf1-Cnf2).
|
||||
xs_gt_ys(Xs,Ys,B, Cnf1-Cnf6) :-
|
||||
split(Xs,LoXs,HiXs),
|
||||
split(Ys,LoYs,HiYs),
|
||||
xs_gt_ys(HiXs,HiYs,B1,Cnf1-Cnf2),
|
||||
xs_eq_ys(HiXs,HiYs,B2,Cnf2-Cnf3),
|
||||
xs_gt_ys(LoXs,LoYs,B3,Cnf3-Cnf4),
|
||||
and(B2,B3,Tmp, Cnf4-Cnf5),
|
||||
or(B1,Tmp,B,Cnf5-Cnf6).
|
||||
|
||||
% Z == X > Y (equivalently Z == X * -Y)
|
||||
gt(X,Y,Z,[[Z,-X,Y],[-Z,X],[-Z,-Y]|Cnf]-Cnf).
|
||||
|
||||
% Z == (X == Y)
|
||||
eq(X,Y,Z, [[-Z,-X,Y],[-Z,X,-Y],
|
||||
[Z,X,Y],[Z,-X,-Y] | Cnf]-Cnf).
|
||||
|
||||
% Z == X or Y
|
||||
or(X,Y,Z, [[Z,-X],[Z,-Y],[-Z,X,Y] | Cnf]-Cnf).
|
||||
|
||||
% Z == X and Y
|
||||
and(X,Y,Z, [[Z,X,Y],[-Z,X],[-Z,Y] | Cnf]-Cnf).
|
||||
|
||||
%
|
||||
split(Xs,As,Bs) :-
|
||||
length(Xs,N), M is N // 2,
|
||||
length(As,M), append(As,Bs,Xs).
|
Reference in New Issue
Block a user