learning is debugging

This commit is contained in:
Vitor Santos Costa 2012-07-03 19:48:13 +01:00
parent b4b1e68c35
commit c67edd877a
7 changed files with 133 additions and 28 deletions

View File

@ -122,7 +122,7 @@
:- dynamic solver/1,output/1,use/1,suppress_attribute_display/1, parameter_softening/1, em_solver/1, use_parfactors/1.
solver(ve).
em_solver(ve).
em_solver(bp).
:- meta_predicate probability(:,-), conditional_probability(:,:,-).

View File

@ -61,7 +61,7 @@ ground_all_keys([], _).
ground_all_keys([V|GVars], AllKeys) :-
clpbn:get_atts(V,[key(Key)]),
\+ ground(Key), !,
wroteln(g:Key),
writeln(g:Key),
member(Key, AllKeys),
ground_all_keys(GVars, AllKeys).
ground_all_keys([_V|GVars], AllKeys) :-

View File

@ -52,25 +52,40 @@
call_horus_ground_solver(QueryVars, QueryKeys, AllKeys, Factors, Evidence, Output) :-
b_hash_new(Hash0),
keys_to_ids(AllKeys, 0, Hash0, Hash),
get_factors_type(Factors, Type),
evidence_to_ids(Evidence, Hash, EvidenceIds),
factors_to_ids(Factors, Hash, FactorIds),
%writeln(type:Type), writeln(''),
%writeln(allKeys:AllKeys), writeln(''),
%sort(AllKeys,SKeys),writeln(allKeys:SKeys), writeln(''),
%writeln(factors:Factors), writeln(''),
%writeln(factorIds:FactorIds), writeln(''),
%writeln(evidence:Evidence), writeln(''),
%writeln(evidenceIds:EvidenceIds), writeln(''),
cpp_create_ground_network(Type, FactorIds, EvidenceIds, Network),
%get_vars_information(AllKeys, StatesNames),
%terms_to_atoms(AllKeys, KeysAtoms),
%cpp_set_vars_information(KeysAtoms, StatesNames),
run_solver(ground(Network,Hash), QueryKeys, Solutions),
clpbn_bind_vals([QueryVars], Solutions, Output),
cpp_free_ground_network(Network).
call_horus_ground_solver_for_probabilities(QueryKeys, AllKeys, Factors, Evidence, Solutions),
clpbn_bind_vals([QueryVars], Solutions, Output).
call_horus_ground_solver_for_probabilities(QueryKeys, _AllKeys, Factors, Evidence, Solutions) :-
attributes:all_attvars(AVars),
keys(AVars, AllKeys),
b_hash_new(Hash0),
keys_to_ids(AllKeys, 0, Hash0, Hash),
get_factors_type(Factors, Type),
evidence_to_ids(Evidence, Hash, EvidenceIds),
factors_to_ids(Factors, Hash, FactorIds),
writeln(queryKeys:QueryKeys), writeln(''),
writeln(type:Type), writeln(''),
writeln(allKeys:AllKeys), writeln(''),
sort(AllKeys,SKeys),writeln(allSortedKeys:SKeys), writeln(''),
keys_to_ids(SKeys, 0, Hash0, Hash),
writeln(factors:Factors), writeln(''),
writeln(factorIds:FactorIds), writeln(''),
writeln(evidence:Evidence), writeln(''),
writeln(evidenceIds:EvidenceIds), writeln(''),
cpp_create_ground_network(Type, FactorIds, EvidenceIds, Network),
get_vars_information(AllKeys, StatesNames),
terms_to_atoms(AllKeys, KeysAtoms),
cpp_set_vars_information(KeysAtoms, StatesNames),
run_solver(ground(Network,Hash), QueryKeys, Solutions),
cpp_free_ground_network(Network).
keys([], []).
keys([V|AVars], [K|AllKeys]) :-
clpbn:get_atts(V,[key(K)]), !,
keys(AVars, AllKeys).
keys([_V|AVars], AllKeys) :-
keys(AVars, AllKeys).
run_solver(ground(Network,Hash), QueryKeys, Solutions) :-
@ -94,9 +109,13 @@ get_factors_type([f(markov, _, _, _)|_], markov) :- ! .
list_of_keys_to_ids([], _, []).
list_of_keys_to_ids([List|Extra], Hash, [IdList|More]) :-
List = [_|_], !,
list_of_keys_to_ids(List, Hash, IdList),
list_of_keys_to_ids(Extra, Hash, More).
list_of_keys_to_ids([Key|QueryKeys], Hash, [Id|QueryIds]) :-
b_hash_lookup(Key, Id, Hash),
list_of_keys_to_ids(QueryKeys, Hash, QueryIds).
b_hash_lookup(Key, Id, Hash),
list_of_keys_to_ids(QueryKeys, Hash, QueryIds).
factors_to_ids([], _, []).
@ -134,10 +153,33 @@ terms_to_atoms(K.Ks, Atom.As) :-
finalize_horus_ground_solver(bp(Network, _)) :-
cpp_free_ground_network(Network).
%
% QVars: all query variables?
%
%
init_horus_ground_solver(QueryVars, _AllVars, _, horus(GKeys, Keys, Factors, Evidence)) :-
trace,
generate_networks(QueryVars, GKeys, [], Keys, [], Factors, [], Evidence),
writeln(qvs:QueryVars),
writeln(Keys), !.
init_horus_ground_solver(_, _AllVars0, _, bp(_BayesNet, _DistIds)) :- !.
%
% as you add query vars the network grows
% until you reach the last variable.
%
generate_networks([QVars|QueryVars], [GK|GKeys], _K0, K, _F0, F, _E0, E) :-
clpbn:generate_network(QVars, GK, KI, FI, EI),
generate_networks(QueryVars, GKeys, KI, K, FI, F, EI, E).
generate_networks([], [], K, K, F, F, E, E).
run_horus_ground_solver(_QueryVars, _Solutions, bp(_Network, _DistIds)) :- !.
%
% just call horus solver.
%
run_horus_ground_solver(_QueryVars, Solutions, horus(GKeys, Keys, Factors, Evidence) ) :- !,
writeln(sols:Solutions),
writeln(state:_State),
trace,
call_horus_ground_solver_for_probabilities(GKeys, Keys, Factors, Evidence, Solutions).
%bp([[]],_,_) :- !.
%bp([QueryVars], AllVars, Output) :-

View File

@ -81,7 +81,6 @@ ve([LVs],Vs0,AllDiffs) :-
init_ve_solver(Qs, Vs0, _, LVis) :-
check_for_agg_vars(Vs0, Vs1),
% LVi will have a list of CLPBN variables
% Tables0 will have the full data on each variable
init_influences(Vs1, G, RG),
init_ve_solver_for_questions(Qs, G, RG, _, LVis).

View File

@ -0,0 +1,56 @@
% learn distribution for school database.
:- use_module(library(pfl)).
:- use_module(library(clpbn/learning/em)).
bayes abi(K)::[h,m,l] ; abi_table ; [professor(K)].
bayes pop(K)::[h,m,l], abi(K) ; pop_table ; [professor(K)].
abi_table([0.3,0.3,0.4]).
pop_table([0.3,0.3,0.4,0.3,0.3,0.4,0.3,0.3,0.4]).
goal_list([/*abi(p0,h),
abi(p1,m),
abi(p2,m),
abi(p3,m),
abi(p4,l),*/
pop(p5,h),
abi(p5,_),
abi(p6,_),
pop(p7,_)]).
professor(p1).
professor(p2).
professor(p3).
professor(p4).
professor(p5).
professor(p6).
professor(p7).
professor(p8).
%:- clpbn:set_clpbn_flag(em_solver,gibbs).
%:- clpbn:set_clpbn_flag(em_solver,jt).
:- clpbn:set_clpbn_flag(em_solver,ve).
%:- clpbn:set_clpbn_flag(em_solver,bp).
timed_main :-
statistics(runtime, _),
main(Lik),
statistics(runtime, [T,_]),
format('Took ~d msec and Lik ~3f~n',[T,Lik]).
main(Lik) :-
goal_list(L),
% run_queries(L),
em(L,0.01,10,_,Lik).
run_queries([]).
run_queries(Q.L) :-
call(Q),
run_queries(L).

File diff suppressed because one or more lines are too long

View File

@ -97,7 +97,7 @@ init_em(Items, state( AllDists, AllDistInstances, MargVars, SolverVars)) :-
em_loop(Its, Likelihood0, State, MaxError, MaxIts, LikelihoodF, FTables) :-
estimate(State, LPs),
maximise(State, Tables, LPs, Likelihood),
% writeln(Likelihood:Its:Likelihood0:Tables),
writeln(iteration:Its:Likelihood:Its:Likelihood0:Tables),
(
(
abs((Likelihood - Likelihood0)/Likelihood) < MaxError
@ -166,6 +166,14 @@ find_variables([K|PKeys], AllVars0, [Parent|Parents]) :-
find_variable(K, AllVars0, Parent),
find_variables(PKeys, AllVars0, Parents).
%
% in clp(bn) the whole network is constructed when you evaluate EM. In
% pfl, we want to delay execution until as late as possible.
% we just create a new variable and hope for the best.
%
%
find_variable(K, [], Parent) :-
clpbn:put_atts(Parent, [key(K)]).
find_variable(K, [Parent|_AllVars0], Parent) :-
clpbn:get_atts(Parent, [key(K0)]), K0 =@= K, !.
find_variable(K, [_|AllVars0], Parent) :-