Merge branch 'udi_new' into yap
This commit is contained in:
commit
c9a01455b5
5
.gitignore
vendored
5
.gitignore
vendored
@ -11,3 +11,8 @@
|
||||
*.dylib
|
||||
docs/yap.info*
|
||||
.build
|
||||
|
||||
.cproject
|
||||
.project
|
||||
.settings
|
||||
autom4te.cache
|
3
.gitmodules
vendored
3
.gitmodules
vendored
@ -43,3 +43,6 @@
|
||||
[submodule "packages/odbc"]
|
||||
path = packages/odbc
|
||||
url = git://yap.git.sourceforge.net/gitroot/yap/odbc
|
||||
[submodule "packages/udi"]
|
||||
path = packages/udi
|
||||
url = https://github.com/davidvaz/yap-udi-indexers.git
|
||||
|
448
C/udi.c
448
C/udi.c
@ -1,169 +1,361 @@
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "Yap.h"
|
||||
#include "YapInterface.h"
|
||||
#include "clause.h"
|
||||
#include "udi.h"
|
||||
#include "udi_private.h"
|
||||
|
||||
/* to keep an array with the registered udi indexers */
|
||||
UT_icd udicb_icd = {sizeof(UdiControlBlock), NULL, NULL, NULL};
|
||||
UT_array *indexing_structures;
|
||||
|
||||
#include "rtree_udi.h"
|
||||
|
||||
/* we can have this stactic because it is written once */
|
||||
static struct udi_control_block RtreeCmd;
|
||||
|
||||
/******
|
||||
All the info we need to enter user indexed code:
|
||||
predicate
|
||||
the user control block
|
||||
functions used, in case we have different schema (maybe should part of previous)
|
||||
right now, this is just a linked list....
|
||||
******/
|
||||
typedef struct udi_info
|
||||
{
|
||||
PredEntry *p;
|
||||
void *cb;
|
||||
UdiControlBlock functions;
|
||||
struct udi_info *next;
|
||||
} *UdiInfo;
|
||||
|
||||
/******
|
||||
we now have one extra user indexed predicate. We assume these
|
||||
are few, so we can do with a linked list.
|
||||
******/
|
||||
static int
|
||||
add_udi_block(void *info, PredEntry *p, UdiControlBlock cmd)
|
||||
{
|
||||
UdiInfo blk = (UdiInfo)Yap_AllocCodeSpace(sizeof(struct udi_info));
|
||||
if (!blk)
|
||||
return FALSE;
|
||||
blk->next = UdiControlBlocks;
|
||||
UdiControlBlocks = blk;
|
||||
blk->p = p;
|
||||
blk->functions = cmd;
|
||||
blk->cb = info;
|
||||
return TRUE;
|
||||
/*
|
||||
* Register a new user indexer
|
||||
*/
|
||||
void
|
||||
Yap_UdiRegister(UdiControlBlock cb){
|
||||
/*TODO: check structure integrity and duplicates */
|
||||
utarray_push_back(indexing_structures, &cb);
|
||||
}
|
||||
|
||||
/******
|
||||
new user indexed predicate;
|
||||
the type right now is just rtrees, but in the future we'll have more.
|
||||
the second argument is the term.
|
||||
******/
|
||||
static Int
|
||||
/*
|
||||
* New user indexed predicate:
|
||||
* the first argument is the term.
|
||||
*/
|
||||
static YAP_Int
|
||||
p_new_udi( USES_REGS1 )
|
||||
{
|
||||
Term spec = Deref(ARG2), udi_type = Deref(ARG1);
|
||||
PredEntry *p;
|
||||
UdiControlBlock cmd;
|
||||
Atom udi_t;
|
||||
void *info;
|
||||
Term spec = Deref(ARG1);
|
||||
|
||||
PredEntry *p;
|
||||
UdiInfo blk;
|
||||
int info;
|
||||
|
||||
/* fprintf(stderr,"new pred babe\n");*/
|
||||
/* get the predicate from the spec, copied from cdmgr.c */
|
||||
if (IsVarTerm(spec)) {
|
||||
Yap_Error(INSTANTIATION_ERROR,spec,"new user index/1");
|
||||
return FALSE;
|
||||
Yap_Error(INSTANTIATION_ERROR,spec,"new user index/1");
|
||||
return FALSE;
|
||||
} else if (!IsApplTerm(spec)) {
|
||||
Yap_Error(TYPE_ERROR_COMPOUND,spec,"new user index/1");
|
||||
return FALSE;
|
||||
Yap_Error(TYPE_ERROR_COMPOUND,spec,"new user index/1");
|
||||
return FALSE;
|
||||
} else {
|
||||
Functor fun = FunctorOfTerm(spec);
|
||||
Term tmod = CurrentModule;
|
||||
Functor fun = FunctorOfTerm(spec);
|
||||
Term tmod = CurrentModule;
|
||||
|
||||
while (fun == FunctorModule) {
|
||||
tmod = ArgOfTerm(1,spec);
|
||||
if (IsVarTerm(tmod) ) {
|
||||
Yap_Error(INSTANTIATION_ERROR, spec, "new user index/1");
|
||||
return FALSE;
|
||||
}
|
||||
if (!IsAtomTerm(tmod) ) {
|
||||
Yap_Error(TYPE_ERROR_ATOM, spec, "new user index/1");
|
||||
return FALSE;
|
||||
}
|
||||
spec = ArgOfTerm(2, spec);
|
||||
fun = FunctorOfTerm(spec);
|
||||
}
|
||||
p = RepPredProp(PredPropByFunc(fun, tmod));
|
||||
while (fun == FunctorModule) {
|
||||
tmod = ArgOfTerm(1,spec);
|
||||
if (IsVarTerm(tmod) ) {
|
||||
Yap_Error(INSTANTIATION_ERROR, spec, "new user index/1");
|
||||
return FALSE;
|
||||
}
|
||||
if (!IsAtomTerm(tmod) ) {
|
||||
Yap_Error(TYPE_ERROR_ATOM, spec, "new user index/1");
|
||||
return FALSE;
|
||||
}
|
||||
spec = ArgOfTerm(2, spec);
|
||||
fun = FunctorOfTerm(spec);
|
||||
}
|
||||
p = RepPredProp(PredPropByFunc(fun, tmod));
|
||||
}
|
||||
if (!p)
|
||||
return FALSE;
|
||||
return FALSE;
|
||||
/* boring, boring, boring! */
|
||||
if ((p->PredFlags & (DynamicPredFlag|LogUpdatePredFlag|UserCPredFlag|CArgsPredFlag|NumberDBPredFlag|AtomDBPredFlag|TestPredFlag|AsmPredFlag|CPredFlag|BinaryPredFlag)) ||
|
||||
(p->ModuleOfPred == PROLOG_MODULE)) {
|
||||
Yap_Error(PERMISSION_ERROR_MODIFY_STATIC_PROCEDURE, spec, "udi/2");
|
||||
return FALSE;
|
||||
if ((p->PredFlags
|
||||
& (DynamicPredFlag|LogUpdatePredFlag|UserCPredFlag|CArgsPredFlag|NumberDBPredFlag|AtomDBPredFlag|TestPredFlag|AsmPredFlag|CPredFlag|BinaryPredFlag))
|
||||
|| (p->ModuleOfPred == PROLOG_MODULE)) {
|
||||
Yap_Error(PERMISSION_ERROR_MODIFY_STATIC_PROCEDURE, spec, "udi/2");
|
||||
return FALSE;
|
||||
}
|
||||
if (p->PredFlags & (DynamicPredFlag|LogUpdatePredFlag|TabledPredFlag)) {
|
||||
Yap_Error(PERMISSION_ERROR_ACCESS_PRIVATE_PROCEDURE, spec, "udi/2");
|
||||
return FALSE;
|
||||
}
|
||||
/* just make sure we're looking at the right user type! */
|
||||
if (IsVarTerm(udi_type)) {
|
||||
Yap_Error(INSTANTIATION_ERROR,spec,"new user index/1");
|
||||
return FALSE;
|
||||
} else if (!IsAtomTerm(udi_type)) {
|
||||
Yap_Error(TYPE_ERROR_ATOM,spec,"new user index/1");
|
||||
return FALSE;
|
||||
}
|
||||
udi_t = AtomOfTerm(udi_type);
|
||||
if (udi_t == AtomRTree) {
|
||||
cmd = &RtreeCmd;
|
||||
} else {
|
||||
Yap_Error(TYPE_ERROR_ATOM,spec,"new user index/1");
|
||||
return FALSE;
|
||||
Yap_Error(PERMISSION_ERROR_ACCESS_PRIVATE_PROCEDURE, spec, "udi/2");
|
||||
return FALSE;
|
||||
}
|
||||
/* TODO: remove AtomRTree from atom list */
|
||||
|
||||
/* this is the real work */
|
||||
info = cmd->init(spec, (void *)p, p->ArityOfPE);
|
||||
if (!info)
|
||||
return FALSE;
|
||||
/* add to table */
|
||||
if (!add_udi_block(info, p, cmd)) {
|
||||
Yap_Error(OUT_OF_HEAP_ERROR, spec, "new user index/1");
|
||||
return FALSE;
|
||||
blk = (UdiInfo) Yap_AllocCodeSpace(sizeof(struct udi_info));
|
||||
memset((void *) blk,0, sizeof(struct udi_info));
|
||||
if (!blk) {
|
||||
Yap_Error(OUT_OF_HEAP_ERROR, spec, "new user index/1");
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/*Init UdiInfo */
|
||||
utarray_new(blk->args, &arg_icd);
|
||||
utarray_new(blk->clauselist, &cl_icd);
|
||||
blk->p = p;
|
||||
|
||||
/*Now Init args list*/
|
||||
info = p_udi_args_init(spec, p->ArityOfPE, blk);
|
||||
if (!info)
|
||||
{
|
||||
utarray_free(blk->args);
|
||||
utarray_free(blk->clauselist);
|
||||
Yap_FreeCodeSpace((char *) blk);
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/*Push into the hash*/
|
||||
HASH_ADD_UdiInfo(UdiControlBlocks, p, blk);
|
||||
|
||||
p->PredFlags |= UDIPredFlag;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/* just pass info to user, called from cdmgr.c */
|
||||
/*
|
||||
* Here we initialize the arguments indexing
|
||||
*/
|
||||
YAP_Int
|
||||
p_udi_args_init(Term spec, int arity, UdiInfo blk)
|
||||
{
|
||||
int i;
|
||||
Term arg;
|
||||
Atom idxtype;
|
||||
UdiControlBlock *cb;
|
||||
struct udi_p_args p_arg;
|
||||
|
||||
for (i = 1; i <= arity; i++) {
|
||||
arg = ArgOfTerm(i,spec);
|
||||
if (IsAtomTerm(arg)) {
|
||||
idxtype = AtomOfTerm(arg);
|
||||
if (idxtype == AtomMinus) //skip this argument
|
||||
continue;
|
||||
p_arg.control = NULL;
|
||||
cb = NULL;
|
||||
while ((cb = (UdiControlBlock *) utarray_next(indexing_structures, cb))) {
|
||||
if (idxtype == (*cb)->decl){
|
||||
p_arg.arg = i;
|
||||
p_arg.control = *cb;
|
||||
p_arg.idxstr = (*cb)->init(spec, i, arity);
|
||||
utarray_push_back(blk->args, &p_arg);
|
||||
}
|
||||
}
|
||||
if (p_arg.control == NULL){ /* not "-" and not found */
|
||||
fprintf(stderr, "Invalid Spec (%s)\n", AtomName(idxtype));
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/*
|
||||
* From now on this is called in several places of yap
|
||||
* when the predicate has the UDIPredFlag
|
||||
* and is what actually triggers the insert/search/abolish of indexing structures
|
||||
*/
|
||||
|
||||
/*
|
||||
* Init Yap udi interface
|
||||
*/
|
||||
void
|
||||
Yap_udi_init(void)
|
||||
{
|
||||
UdiControlBlocks = NULL;
|
||||
|
||||
/*init indexing structures array*/
|
||||
utarray_new(indexing_structures, &udicb_icd);
|
||||
|
||||
Yap_InitCPred("$udi_init", 1, p_new_udi, 0);
|
||||
/* TODO: decide if udi.yap should be loaded automaticaly in init.yap */
|
||||
}
|
||||
|
||||
/* called from cdmgr.c
|
||||
*
|
||||
* for each assert of a udipredicate
|
||||
* to pass info to user structure
|
||||
*/
|
||||
int
|
||||
Yap_new_udi_clause(PredEntry *p, yamop *cl, Term t)
|
||||
{
|
||||
struct udi_info *info = UdiControlBlocks;
|
||||
while (info->p != p && info)
|
||||
info = info->next;
|
||||
if (!info)
|
||||
return FALSE;
|
||||
info->cb = info->functions->insert(t, info->cb, (void *)cl);
|
||||
return TRUE;
|
||||
int i;
|
||||
UdiPArg parg;
|
||||
UdiInfo info;
|
||||
YAP_Int index;
|
||||
|
||||
/* try to find our structure */
|
||||
HASH_FIND_UdiInfo(UdiControlBlocks,p,info);
|
||||
if (!info)
|
||||
return FALSE;
|
||||
|
||||
/* insert into clauselist */
|
||||
utarray_push_back(info->clauselist, &cl);
|
||||
|
||||
for (i = 0; i < utarray_len(info->args) ; i++) {
|
||||
parg = (UdiPArg) utarray_eltptr(info->args,i);
|
||||
index = (YAP_Int) utarray_len(info->clauselist);
|
||||
parg->idxstr = parg->control->insert(parg->idxstr, t,
|
||||
parg->arg,
|
||||
(void *) index);
|
||||
}
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/* index, called from absmi.c */
|
||||
/* index, called from absmi.c
|
||||
*
|
||||
* Returns:
|
||||
* NULL (yap fallback) No usable indexing available
|
||||
*
|
||||
* Yap_FAILCODE() (fail) No result found
|
||||
* Yap_CauseListToClause(cl) 1 solution found
|
||||
* Yap_ClauseListCode(cl) 2+ solutions found
|
||||
*/
|
||||
yamop *
|
||||
Yap_udi_search(PredEntry *p)
|
||||
{
|
||||
struct udi_info *info = UdiControlBlocks;
|
||||
while (info->p != p && info)
|
||||
info = info->next;
|
||||
if (!info)
|
||||
return NULL;
|
||||
return info->functions->search(info->cb);
|
||||
int r;
|
||||
struct ClauseList clauselist;
|
||||
UdiPArg parg;
|
||||
UdiInfo info;
|
||||
|
||||
/* find our structure*/
|
||||
HASH_FIND_UdiInfo(UdiControlBlocks,p,info);
|
||||
if (!info || utarray_len(info->args) == 0)
|
||||
return NULL;
|
||||
|
||||
if (utarray_len(info->args) == 1){ //simple case no intersection needed
|
||||
struct si_callback_h c;
|
||||
|
||||
c.cl = Yap_ClauseListInit(&clauselist);
|
||||
c.clauselist = info->clauselist;
|
||||
c.pred = info->p;
|
||||
if (!c.cl)
|
||||
return NULL;
|
||||
|
||||
parg = (UdiPArg) utarray_eltptr(info->args,0);
|
||||
r = parg->control->search(parg->idxstr, parg->arg, si_callback, (void *) &c);
|
||||
Yap_ClauseListClose(c.cl);
|
||||
|
||||
if (r == -1) {
|
||||
Yap_ClauseListDestroy(c.cl);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (Yap_ClauseListCount(c.cl) == 0) {
|
||||
Yap_ClauseListDestroy(c.cl);
|
||||
return Yap_FAILCODE();
|
||||
}
|
||||
} else {//intersection needed using Judy1
|
||||
#ifdef USE_JUDY
|
||||
/*TODO: do more tests to this algorithm*/
|
||||
int i;
|
||||
Pvoid_t tmp = (Pvoid_t) NULL;
|
||||
Pvoid_t result = (Pvoid_t) NULL;
|
||||
Word_t count = 0L;
|
||||
Word_t idx_r = 0L;
|
||||
Word_t idx_tmp = 0L;
|
||||
int rc = 0;
|
||||
yamop **x;
|
||||
|
||||
/*
|
||||
* I will start with the simplest approach
|
||||
* for each index create a set and intersect it with the
|
||||
* next
|
||||
*
|
||||
* In the future it could pay to sort according to index type
|
||||
* to improve intersection part
|
||||
*/
|
||||
for (i = 0; i < utarray_len(info->args) ; i++) {
|
||||
parg = (UdiPArg) utarray_eltptr(info->args,i);
|
||||
r = parg->control->search(parg->idxstr, parg->arg, j1_callback, &tmp);
|
||||
if (r == -1) /*this arg does not prune search*/
|
||||
continue;
|
||||
rc ++;
|
||||
J1C(count, result, 0, -1);
|
||||
if (r == 0) /* this arg gave 0 results -> FAIL*/
|
||||
{
|
||||
if (count > 0) // clear previous result if they exists
|
||||
J1FA(count, result);
|
||||
return Yap_FAILCODE();
|
||||
}
|
||||
|
||||
if (count == 0) // first result_set
|
||||
{
|
||||
result = tmp;
|
||||
tmp = (Pvoid_t) NULL;
|
||||
}
|
||||
else /*intersection*/
|
||||
{
|
||||
idx_tmp = 0L;
|
||||
idx_r = 0L;
|
||||
J1F(count, result, idx_r); //succeeds one time at least
|
||||
assert(count > 0);
|
||||
J1F(count, tmp, idx_tmp); //succeeds one time at least
|
||||
assert(count > 0);
|
||||
while (count)
|
||||
{
|
||||
while (idx_r < idx_tmp)
|
||||
{
|
||||
J1U(count, result, idx_r); //does not belong
|
||||
J1N(count, result, idx_r); //next
|
||||
if (! count) break; //end result set
|
||||
}
|
||||
if(idx_r == idx_tmp)
|
||||
{
|
||||
J1N(count, result, idx_r); //next
|
||||
if (! count) break; //end result set
|
||||
J1N(count, tmp, idx_tmp); //next tmp
|
||||
//if (! count) break; //end tmp set will break while
|
||||
}
|
||||
else // (idx_r > idx_tmp)
|
||||
{
|
||||
idx_tmp = idx_r; // fast forward
|
||||
J1F(count, tmp, idx_tmp); // first starting in idx_r
|
||||
//if (! count) break; //end tmp set will break while
|
||||
}
|
||||
}
|
||||
J1F(count, result, idx_r); // first starting in idx_r
|
||||
//clear up the rest
|
||||
while (idx_r > idx_tmp && count) //result has more setted values
|
||||
{
|
||||
J1U(count, result, idx_r); //does not belong
|
||||
J1N(count, result, idx_r); //next
|
||||
}
|
||||
J1FA(count, tmp); //free tmp
|
||||
}
|
||||
}
|
||||
if (rc == 0) /*no search performed*/
|
||||
return NULL;
|
||||
|
||||
J1C(count, result, 0, -1);
|
||||
if (count == 0) { /*result set empty -> FAIL */
|
||||
J1FA(count, result);
|
||||
return Yap_FAILCODE();
|
||||
}
|
||||
|
||||
/*convert Juddy1 to clauselist*/
|
||||
Yap_ClauseListInit(&clauselist);
|
||||
idx_r = 0L;
|
||||
J1F(count, result, idx_r);
|
||||
while (count)
|
||||
{
|
||||
x = (yamop **) utarray_eltptr(info->clauselist, idx_r - 1);
|
||||
Yap_ClauseListExtend(
|
||||
&clauselist,
|
||||
*x,
|
||||
info->p);
|
||||
J1N(count, result, idx_r);
|
||||
}
|
||||
J1FA(count,result);
|
||||
fprintf(stderr,"J1 used space %d bytes for %d clausules\n",
|
||||
count, Yap_ClauseListCount(&clauselist));
|
||||
Yap_ClauseListClose(&clauselist);
|
||||
#else
|
||||
fprintf(stderr,"Without libJudy only one argument indexed is allowed."
|
||||
"Falling back to Yap Indexing\n");
|
||||
return NULL; //NO Judy Available
|
||||
#endif
|
||||
}
|
||||
|
||||
if (Yap_ClauseListCount(&clauselist) == 1)
|
||||
return Yap_ClauseListToClause(&clauselist);
|
||||
return Yap_ClauseListCode(&clauselist);
|
||||
}
|
||||
|
||||
/* index, called from absmi.c */
|
||||
void
|
||||
Yap_udi_abolish(PredEntry *p)
|
||||
{
|
||||
/* tell the predicate destroy */
|
||||
/* tell the predicate destroy */
|
||||
}
|
||||
|
||||
void
|
||||
Yap_udi_init(void)
|
||||
{
|
||||
UdiControlBlocks = NULL;
|
||||
/* to be filled in by David */
|
||||
RtreeCmd.init = RtreeUdiInit;
|
||||
RtreeCmd.insert = RtreeUdiInsert;
|
||||
RtreeCmd.search = RtreeUdiSearch;
|
||||
RtreeCmd.destroy = RtreeUdiDestroy;
|
||||
Yap_InitCPred("$udi_init", 2, p_new_udi, 0);
|
||||
}
|
||||
|
||||
|
@ -367,8 +367,9 @@ Term STD_PROTO(Yap_LUInstance,(LogUpdClause *, UInt));
|
||||
|
||||
/* udi.c */
|
||||
void STD_PROTO(Yap_udi_init,(void));
|
||||
yamop *STD_PROTO(Yap_udi_search,(PredEntry *));
|
||||
int STD_PROTO(Yap_new_udi_clause,(PredEntry *, yamop *, Term));
|
||||
yamop *STD_PROTO(Yap_udi_search,(PredEntry *));
|
||||
void STD_PROTO(Yap_udi_abolish,(PredEntry *p));
|
||||
|
||||
#ifdef DEBUG
|
||||
void STD_PROTO(Yap_bug_location,(yamop *));
|
||||
|
74
H/udi_private.h
Normal file
74
H/udi_private.h
Normal file
@ -0,0 +1,74 @@
|
||||
#include "config.h"
|
||||
#include "udi.h"
|
||||
#include "utarray.h"
|
||||
#include "uthash.h"
|
||||
|
||||
/* Argument Indexing */
|
||||
struct udi_p_args {
|
||||
int arg; //indexed arg
|
||||
void *idxstr; //user indexing structure
|
||||
UdiControlBlock control; //user indexing structure functions
|
||||
};
|
||||
typedef struct udi_p_args *UdiPArg;
|
||||
UT_icd arg_icd = {sizeof(struct udi_p_args), NULL, NULL, NULL };
|
||||
|
||||
/* clauselist */
|
||||
UT_icd cl_icd = {sizeof(yamop *), NULL, NULL, NULL };
|
||||
|
||||
/*
|
||||
* All the info we need to enter user indexed code
|
||||
* stored in a uthash
|
||||
*/
|
||||
struct udi_info
|
||||
{
|
||||
PredEntry *p; //predicate (need to identify asserts)
|
||||
UT_array *clauselist; //clause list used on returns
|
||||
UT_array *args; //indexed args
|
||||
UT_hash_handle hh; //uthash handle
|
||||
};
|
||||
typedef struct udi_info *UdiInfo;
|
||||
|
||||
/* to ease code for a UdiInfo hash table*/
|
||||
#define HASH_FIND_UdiInfo(head,find,out) \
|
||||
HASH_FIND(hh,head,find,sizeof(PredEntry *),out)
|
||||
#define HASH_ADD_UdiInfo(head,p,add) \
|
||||
HASH_ADD_KEYPTR(hh,head,p,sizeof(PredEntry *),add)
|
||||
|
||||
/* used during init */
|
||||
static YAP_Int p_new_udi( USES_REGS1 );
|
||||
static YAP_Int p_udi_args_init(Term spec, int arity, UdiInfo blk);
|
||||
|
||||
/*
|
||||
* Indexing Search and intersection Helpers
|
||||
*/
|
||||
|
||||
/* single indexing helpers (no intersection needed just create clauselist) */
|
||||
#include "clause_list.h"
|
||||
struct si_callback_h
|
||||
{
|
||||
clause_list_t cl;
|
||||
UT_array *clauselist;
|
||||
void * pred;
|
||||
};
|
||||
typedef struct si_callback_h * si_callback_h_t;
|
||||
|
||||
static inline int si_callback(void *key, void *data, void *arg)
|
||||
{
|
||||
si_callback_h_t c = (si_callback_h_t) arg;
|
||||
yamop **cl = (yamop **) utarray_eltptr(c->clauselist, ((YAP_Int) data) - 1);
|
||||
return Yap_ClauseListExtend(c->cl, *cl, c->pred);
|
||||
}
|
||||
|
||||
#ifdef USE_JUDY
|
||||
#include <Judy.h>
|
||||
/* Judy1 integer sparse set intersection */
|
||||
static inline int j1_callback(void *key, void *data, void *arg)
|
||||
{
|
||||
int r;
|
||||
Pvoid_t *array = (Pvoid_t *) arg;
|
||||
J1S(r, *array, (int) data);
|
||||
if (r == JERR)
|
||||
return FALSE;
|
||||
return TRUE;
|
||||
}
|
||||
#endif
|
233
H/utarray.h
Normal file
233
H/utarray.h
Normal file
@ -0,0 +1,233 @@
|
||||
/*
|
||||
Copyright (c) 2008-2013, Troy D. Hanson http://uthash.sourceforge.net
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/* a dynamic array implementation using macros
|
||||
* see http://uthash.sourceforge.net/utarray
|
||||
*/
|
||||
#ifndef UTARRAY_H
|
||||
#define UTARRAY_H
|
||||
|
||||
#define UTARRAY_VERSION 1.9.7
|
||||
|
||||
#ifdef __GNUC__
|
||||
#define _UNUSED_ __attribute__ ((__unused__))
|
||||
#else
|
||||
#define _UNUSED_
|
||||
#endif
|
||||
|
||||
#include <stddef.h> /* size_t */
|
||||
#include <string.h> /* memset, etc */
|
||||
#include <stdlib.h> /* exit */
|
||||
|
||||
#define oom() exit(-1)
|
||||
|
||||
typedef void (ctor_f)(void *dst, const void *src);
|
||||
typedef void (dtor_f)(void *elt);
|
||||
typedef void (init_f)(void *elt);
|
||||
typedef struct {
|
||||
size_t sz;
|
||||
init_f *init;
|
||||
ctor_f *copy;
|
||||
dtor_f *dtor;
|
||||
} UT_icd;
|
||||
|
||||
typedef struct {
|
||||
unsigned i,n;/* i: index of next available slot, n: num slots */
|
||||
UT_icd icd; /* initializer, copy and destructor functions */
|
||||
char *d; /* n slots of size icd->sz*/
|
||||
} UT_array;
|
||||
|
||||
#define utarray_init(a,_icd) do { \
|
||||
memset(a,0,sizeof(UT_array)); \
|
||||
(a)->icd=*_icd; \
|
||||
} while(0)
|
||||
|
||||
#define utarray_done(a) do { \
|
||||
if ((a)->n) { \
|
||||
if ((a)->icd.dtor) { \
|
||||
size_t _ut_i; \
|
||||
for(_ut_i=0; _ut_i < (a)->i; _ut_i++) { \
|
||||
(a)->icd.dtor(utarray_eltptr(a,_ut_i)); \
|
||||
} \
|
||||
} \
|
||||
free((a)->d); \
|
||||
} \
|
||||
(a)->n=0; \
|
||||
} while(0)
|
||||
|
||||
#define utarray_new(a,_icd) do { \
|
||||
a=(UT_array*)malloc(sizeof(UT_array)); \
|
||||
utarray_init(a,_icd); \
|
||||
} while(0)
|
||||
|
||||
#define utarray_free(a) do { \
|
||||
utarray_done(a); \
|
||||
free(a); \
|
||||
} while(0)
|
||||
|
||||
#define utarray_reserve(a,by) do { \
|
||||
if (((a)->i+by) > ((a)->n)) { \
|
||||
while(((a)->i+by) > ((a)->n)) { (a)->n = ((a)->n ? (2*(a)->n) : 8); } \
|
||||
if ( ((a)->d=(char*)realloc((a)->d, (a)->n*(a)->icd.sz)) == NULL) oom(); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#define utarray_push_back(a,p) do { \
|
||||
utarray_reserve(a,1); \
|
||||
if ((a)->icd.copy) { (a)->icd.copy( _utarray_eltptr(a,(a)->i++), p); } \
|
||||
else { memcpy(_utarray_eltptr(a,(a)->i++), p, (a)->icd.sz); }; \
|
||||
} while(0)
|
||||
|
||||
#define utarray_pop_back(a) do { \
|
||||
if ((a)->icd.dtor) { (a)->icd.dtor( _utarray_eltptr(a,--((a)->i))); } \
|
||||
else { (a)->i--; } \
|
||||
} while(0)
|
||||
|
||||
#define utarray_extend_back(a) do { \
|
||||
utarray_reserve(a,1); \
|
||||
if ((a)->icd.init) { (a)->icd.init(_utarray_eltptr(a,(a)->i)); } \
|
||||
else { memset(_utarray_eltptr(a,(a)->i),0,(a)->icd.sz); } \
|
||||
(a)->i++; \
|
||||
} while(0)
|
||||
|
||||
#define utarray_len(a) ((a)->i)
|
||||
|
||||
#define utarray_eltptr(a,j) (((j) < (a)->i) ? _utarray_eltptr(a,j) : NULL)
|
||||
#define _utarray_eltptr(a,j) ((char*)((a)->d + ((a)->icd.sz*(j) )))
|
||||
|
||||
#define utarray_insert(a,p,j) do { \
|
||||
utarray_reserve(a,1); \
|
||||
if (j > (a)->i) break; \
|
||||
if ((j) < (a)->i) { \
|
||||
memmove( _utarray_eltptr(a,(j)+1), _utarray_eltptr(a,j), \
|
||||
((a)->i - (j))*((a)->icd.sz)); \
|
||||
} \
|
||||
if ((a)->icd.copy) { (a)->icd.copy( _utarray_eltptr(a,j), p); } \
|
||||
else { memcpy(_utarray_eltptr(a,j), p, (a)->icd.sz); }; \
|
||||
(a)->i++; \
|
||||
} while(0)
|
||||
|
||||
#define utarray_inserta(a,w,j) do { \
|
||||
if (utarray_len(w) == 0) break; \
|
||||
if (j > (a)->i) break; \
|
||||
utarray_reserve(a,utarray_len(w)); \
|
||||
if ((j) < (a)->i) { \
|
||||
memmove(_utarray_eltptr(a,(j)+utarray_len(w)), \
|
||||
_utarray_eltptr(a,j), \
|
||||
((a)->i - (j))*((a)->icd.sz)); \
|
||||
} \
|
||||
if ((a)->icd.copy) { \
|
||||
size_t _ut_i; \
|
||||
for(_ut_i=0;_ut_i<(w)->i;_ut_i++) { \
|
||||
(a)->icd.copy(_utarray_eltptr(a,j+_ut_i), _utarray_eltptr(w,_ut_i)); \
|
||||
} \
|
||||
} else { \
|
||||
memcpy(_utarray_eltptr(a,j), _utarray_eltptr(w,0), \
|
||||
utarray_len(w)*((a)->icd.sz)); \
|
||||
} \
|
||||
(a)->i += utarray_len(w); \
|
||||
} while(0)
|
||||
|
||||
#define utarray_resize(dst,num) do { \
|
||||
size_t _ut_i; \
|
||||
if (dst->i > (size_t)(num)) { \
|
||||
if ((dst)->icd.dtor) { \
|
||||
for(_ut_i=num; _ut_i < dst->i; _ut_i++) { \
|
||||
(dst)->icd.dtor(utarray_eltptr(dst,_ut_i)); \
|
||||
} \
|
||||
} \
|
||||
} else if (dst->i < (size_t)(num)) { \
|
||||
utarray_reserve(dst,num-dst->i); \
|
||||
if ((dst)->icd.init) { \
|
||||
for(_ut_i=dst->i; _ut_i < num; _ut_i++) { \
|
||||
(dst)->icd.init(utarray_eltptr(dst,_ut_i)); \
|
||||
} \
|
||||
} else { \
|
||||
memset(_utarray_eltptr(dst,dst->i),0,(dst)->icd.sz*(num-dst->i)); \
|
||||
} \
|
||||
} \
|
||||
dst->i = num; \
|
||||
} while(0)
|
||||
|
||||
#define utarray_concat(dst,src) do { \
|
||||
utarray_inserta((dst),(src),utarray_len(dst)); \
|
||||
} while(0)
|
||||
|
||||
#define utarray_erase(a,pos,len) do { \
|
||||
if ((a)->icd.dtor) { \
|
||||
size_t _ut_i; \
|
||||
for(_ut_i=0; _ut_i < len; _ut_i++) { \
|
||||
(a)->icd.dtor(utarray_eltptr((a),pos+_ut_i)); \
|
||||
} \
|
||||
} \
|
||||
if ((a)->i > (pos+len)) { \
|
||||
memmove( _utarray_eltptr((a),pos), _utarray_eltptr((a),pos+len), \
|
||||
(((a)->i)-(pos+len))*((a)->icd.sz)); \
|
||||
} \
|
||||
(a)->i -= (len); \
|
||||
} while(0)
|
||||
|
||||
#define utarray_renew(a,u) do { \
|
||||
if (a) utarray_clear(a); \
|
||||
else utarray_new((a),(u)); \
|
||||
} while(0)
|
||||
|
||||
#define utarray_clear(a) do { \
|
||||
if ((a)->i > 0) { \
|
||||
if ((a)->icd.dtor) { \
|
||||
size_t _ut_i; \
|
||||
for(_ut_i=0; _ut_i < (a)->i; _ut_i++) { \
|
||||
(a)->icd.dtor(utarray_eltptr(a,_ut_i)); \
|
||||
} \
|
||||
} \
|
||||
(a)->i = 0; \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#define utarray_sort(a,cmp) do { \
|
||||
qsort((a)->d, (a)->i, (a)->icd.sz, cmp); \
|
||||
} while(0)
|
||||
|
||||
#define utarray_find(a,v,cmp) bsearch((v),(a)->d,(a)->i,(a)->icd.sz,cmp)
|
||||
|
||||
#define utarray_front(a) (((a)->i) ? (_utarray_eltptr(a,0)) : NULL)
|
||||
#define utarray_next(a,e) (((e)==NULL) ? utarray_front(a) : ((((a)->i) > (utarray_eltidx(a,e)+1)) ? _utarray_eltptr(a,utarray_eltidx(a,e)+1) : NULL))
|
||||
#define utarray_prev(a,e) (((e)==NULL) ? utarray_back(a) : ((utarray_eltidx(a,e) > 0) ? _utarray_eltptr(a,utarray_eltidx(a,e)-1) : NULL))
|
||||
#define utarray_back(a) (((a)->i) ? (_utarray_eltptr(a,(a)->i-1)) : NULL)
|
||||
#define utarray_eltidx(a,e) (((char*)(e) >= (char*)((a)->d)) ? (((char*)(e) - (char*)((a)->d))/(a)->icd.sz) : -1)
|
||||
|
||||
/* last we pre-define a few icd for common utarrays of ints and strings */
|
||||
static void utarray_str_cpy(void *dst, const void *src) {
|
||||
char **_src = (char**)src, **_dst = (char**)dst;
|
||||
*_dst = (*_src == NULL) ? NULL : strdup(*_src);
|
||||
}
|
||||
static void utarray_str_dtor(void *elt) {
|
||||
char **eltc = (char**)elt;
|
||||
if (*eltc) free(*eltc);
|
||||
}
|
||||
static const UT_icd ut_str_icd _UNUSED_ = {sizeof(char*),NULL,utarray_str_cpy,utarray_str_dtor};
|
||||
static const UT_icd ut_int_icd _UNUSED_ = {sizeof(int),NULL,NULL,NULL};
|
||||
static const UT_icd ut_ptr_icd _UNUSED_ = {sizeof(void*),NULL,NULL,NULL};
|
||||
|
||||
|
||||
#endif /* UTARRAY_H */
|
917
H/uthash.h
Normal file
917
H/uthash.h
Normal file
@ -0,0 +1,917 @@
|
||||
/*
|
||||
Copyright (c) 2003-2013, Troy D. Hanson http://uthash.sourceforge.net
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef UTHASH_H
|
||||
#define UTHASH_H
|
||||
|
||||
#include <string.h> /* memcmp,strlen */
|
||||
#include <stddef.h> /* ptrdiff_t */
|
||||
#include <stdlib.h> /* exit() */
|
||||
|
||||
/* These macros use decltype or the earlier __typeof GNU extension.
|
||||
As decltype is only available in newer compilers (VS2010 or gcc 4.3+
|
||||
when compiling c++ source) this code uses whatever method is needed
|
||||
or, for VS2008 where neither is available, uses casting workarounds. */
|
||||
#ifdef _MSC_VER /* MS compiler */
|
||||
#if _MSC_VER >= 1600 && defined(__cplusplus) /* VS2010 or newer in C++ mode */
|
||||
#define DECLTYPE(x) (decltype(x))
|
||||
#else /* VS2008 or older (or VS2010 in C mode) */
|
||||
#define NO_DECLTYPE
|
||||
#define DECLTYPE(x)
|
||||
#endif
|
||||
#else /* GNU, Sun and other compilers */
|
||||
#define DECLTYPE(x) (__typeof(x))
|
||||
#endif
|
||||
|
||||
#ifdef NO_DECLTYPE
|
||||
#define DECLTYPE_ASSIGN(dst,src) \
|
||||
do { \
|
||||
char **_da_dst = (char**)(&(dst)); \
|
||||
*_da_dst = (char*)(src); \
|
||||
} while(0)
|
||||
#else
|
||||
#define DECLTYPE_ASSIGN(dst,src) \
|
||||
do { \
|
||||
(dst) = DECLTYPE(dst)(src); \
|
||||
} while(0)
|
||||
#endif
|
||||
|
||||
/* a number of the hash function use uint32_t which isn't defined on win32 */
|
||||
#ifdef _MSC_VER
|
||||
typedef unsigned int uint32_t;
|
||||
typedef unsigned char uint8_t;
|
||||
#else
|
||||
#include <inttypes.h> /* uint32_t */
|
||||
#endif
|
||||
|
||||
#define UTHASH_VERSION 1.9.7
|
||||
|
||||
#ifndef uthash_fatal
|
||||
#define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */
|
||||
#endif
|
||||
#ifndef uthash_malloc
|
||||
#define uthash_malloc(sz) malloc(sz) /* malloc fcn */
|
||||
#endif
|
||||
#ifndef uthash_free
|
||||
#define uthash_free(ptr,sz) free(ptr) /* free fcn */
|
||||
#endif
|
||||
|
||||
#ifndef uthash_noexpand_fyi
|
||||
#define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */
|
||||
#endif
|
||||
#ifndef uthash_expand_fyi
|
||||
#define uthash_expand_fyi(tbl) /* can be defined to log expands */
|
||||
#endif
|
||||
|
||||
/* initial number of buckets */
|
||||
#define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */
|
||||
#define HASH_INITIAL_NUM_BUCKETS_LOG2 5 /* lg2 of initial number of buckets */
|
||||
#define HASH_BKT_CAPACITY_THRESH 10 /* expand when bucket count reaches */
|
||||
|
||||
/* calculate the element whose hash handle address is hhe */
|
||||
#define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho)))
|
||||
|
||||
#define HASH_FIND(hh,head,keyptr,keylen,out) \
|
||||
do { \
|
||||
unsigned _hf_bkt,_hf_hashv; \
|
||||
out=NULL; \
|
||||
if (head) { \
|
||||
HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \
|
||||
if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \
|
||||
HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \
|
||||
keyptr,keylen,out); \
|
||||
} \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef HASH_BLOOM
|
||||
#define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM)
|
||||
#define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0)
|
||||
#define HASH_BLOOM_MAKE(tbl) \
|
||||
do { \
|
||||
(tbl)->bloom_nbits = HASH_BLOOM; \
|
||||
(tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \
|
||||
if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \
|
||||
memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \
|
||||
(tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \
|
||||
} while (0)
|
||||
|
||||
#define HASH_BLOOM_FREE(tbl) \
|
||||
do { \
|
||||
uthash_free((tbl)->bloom_bv, HASH_BLOOM_BYTELEN); \
|
||||
} while (0)
|
||||
|
||||
#define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8)))
|
||||
#define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8)))
|
||||
|
||||
#define HASH_BLOOM_ADD(tbl,hashv) \
|
||||
HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
|
||||
|
||||
#define HASH_BLOOM_TEST(tbl,hashv) \
|
||||
HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
|
||||
|
||||
#else
|
||||
#define HASH_BLOOM_MAKE(tbl)
|
||||
#define HASH_BLOOM_FREE(tbl)
|
||||
#define HASH_BLOOM_ADD(tbl,hashv)
|
||||
#define HASH_BLOOM_TEST(tbl,hashv) (1)
|
||||
#endif
|
||||
|
||||
#define HASH_MAKE_TABLE(hh,head) \
|
||||
do { \
|
||||
(head)->hh.tbl = (UT_hash_table*)uthash_malloc( \
|
||||
sizeof(UT_hash_table)); \
|
||||
if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \
|
||||
memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \
|
||||
(head)->hh.tbl->tail = &((head)->hh); \
|
||||
(head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \
|
||||
(head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \
|
||||
(head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \
|
||||
(head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \
|
||||
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
|
||||
if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \
|
||||
memset((head)->hh.tbl->buckets, 0, \
|
||||
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
|
||||
HASH_BLOOM_MAKE((head)->hh.tbl); \
|
||||
(head)->hh.tbl->signature = HASH_SIGNATURE; \
|
||||
} while(0)
|
||||
|
||||
#define HASH_ADD(hh,head,fieldname,keylen_in,add) \
|
||||
HASH_ADD_KEYPTR(hh,head,&((add)->fieldname),keylen_in,add)
|
||||
|
||||
#define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \
|
||||
do { \
|
||||
unsigned _ha_bkt; \
|
||||
(add)->hh.next = NULL; \
|
||||
(add)->hh.key = (char*)keyptr; \
|
||||
(add)->hh.keylen = (unsigned)keylen_in; \
|
||||
if (!(head)) { \
|
||||
head = (add); \
|
||||
(head)->hh.prev = NULL; \
|
||||
HASH_MAKE_TABLE(hh,head); \
|
||||
} else { \
|
||||
(head)->hh.tbl->tail->next = (add); \
|
||||
(add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \
|
||||
(head)->hh.tbl->tail = &((add)->hh); \
|
||||
} \
|
||||
(head)->hh.tbl->num_items++; \
|
||||
(add)->hh.tbl = (head)->hh.tbl; \
|
||||
HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \
|
||||
(add)->hh.hashv, _ha_bkt); \
|
||||
HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \
|
||||
HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \
|
||||
HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \
|
||||
HASH_FSCK(hh,head); \
|
||||
} while(0)
|
||||
|
||||
#define HASH_TO_BKT( hashv, num_bkts, bkt ) \
|
||||
do { \
|
||||
bkt = ((hashv) & ((num_bkts) - 1)); \
|
||||
} while(0)
|
||||
|
||||
/* delete "delptr" from the hash table.
|
||||
* "the usual" patch-up process for the app-order doubly-linked-list.
|
||||
* The use of _hd_hh_del below deserves special explanation.
|
||||
* These used to be expressed using (delptr) but that led to a bug
|
||||
* if someone used the same symbol for the head and deletee, like
|
||||
* HASH_DELETE(hh,users,users);
|
||||
* We want that to work, but by changing the head (users) below
|
||||
* we were forfeiting our ability to further refer to the deletee (users)
|
||||
* in the patch-up process. Solution: use scratch space to
|
||||
* copy the deletee pointer, then the latter references are via that
|
||||
* scratch pointer rather than through the repointed (users) symbol.
|
||||
*/
|
||||
#define HASH_DELETE(hh,head,delptr) \
|
||||
do { \
|
||||
unsigned _hd_bkt; \
|
||||
struct UT_hash_handle *_hd_hh_del; \
|
||||
if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \
|
||||
uthash_free((head)->hh.tbl->buckets, \
|
||||
(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \
|
||||
HASH_BLOOM_FREE((head)->hh.tbl); \
|
||||
uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \
|
||||
head = NULL; \
|
||||
} else { \
|
||||
_hd_hh_del = &((delptr)->hh); \
|
||||
if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \
|
||||
(head)->hh.tbl->tail = \
|
||||
(UT_hash_handle*)((ptrdiff_t)((delptr)->hh.prev) + \
|
||||
(head)->hh.tbl->hho); \
|
||||
} \
|
||||
if ((delptr)->hh.prev) { \
|
||||
((UT_hash_handle*)((ptrdiff_t)((delptr)->hh.prev) + \
|
||||
(head)->hh.tbl->hho))->next = (delptr)->hh.next; \
|
||||
} else { \
|
||||
DECLTYPE_ASSIGN(head,(delptr)->hh.next); \
|
||||
} \
|
||||
if (_hd_hh_del->next) { \
|
||||
((UT_hash_handle*)((ptrdiff_t)_hd_hh_del->next + \
|
||||
(head)->hh.tbl->hho))->prev = \
|
||||
_hd_hh_del->prev; \
|
||||
} \
|
||||
HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \
|
||||
HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \
|
||||
(head)->hh.tbl->num_items--; \
|
||||
} \
|
||||
HASH_FSCK(hh,head); \
|
||||
} while (0)
|
||||
|
||||
|
||||
/* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */
|
||||
#define HASH_FIND_STR(head,findstr,out) \
|
||||
HASH_FIND(hh,head,findstr,strlen(findstr),out)
|
||||
#define HASH_ADD_STR(head,strfield,add) \
|
||||
HASH_ADD(hh,head,strfield,strlen(add->strfield),add)
|
||||
#define HASH_FIND_INT(head,findint,out) \
|
||||
HASH_FIND(hh,head,findint,sizeof(int),out)
|
||||
#define HASH_ADD_INT(head,intfield,add) \
|
||||
HASH_ADD(hh,head,intfield,sizeof(int),add)
|
||||
#define HASH_FIND_PTR(head,findptr,out) \
|
||||
HASH_FIND(hh,head,findptr,sizeof(void *),out)
|
||||
#define HASH_ADD_PTR(head,ptrfield,add) \
|
||||
HASH_ADD(hh,head,ptrfield,sizeof(void *),add)
|
||||
#define HASH_DEL(head,delptr) \
|
||||
HASH_DELETE(hh,head,delptr)
|
||||
|
||||
/* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined.
|
||||
* This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined.
|
||||
*/
|
||||
#ifdef HASH_DEBUG
|
||||
#define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0)
|
||||
#define HASH_FSCK(hh,head) \
|
||||
do { \
|
||||
unsigned _bkt_i; \
|
||||
unsigned _count, _bkt_count; \
|
||||
char *_prev; \
|
||||
struct UT_hash_handle *_thh; \
|
||||
if (head) { \
|
||||
_count = 0; \
|
||||
for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \
|
||||
_bkt_count = 0; \
|
||||
_thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \
|
||||
_prev = NULL; \
|
||||
while (_thh) { \
|
||||
if (_prev != (char*)(_thh->hh_prev)) { \
|
||||
HASH_OOPS("invalid hh_prev %p, actual %p\n", \
|
||||
_thh->hh_prev, _prev ); \
|
||||
} \
|
||||
_bkt_count++; \
|
||||
_prev = (char*)(_thh); \
|
||||
_thh = _thh->hh_next; \
|
||||
} \
|
||||
_count += _bkt_count; \
|
||||
if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \
|
||||
HASH_OOPS("invalid bucket count %d, actual %d\n", \
|
||||
(head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \
|
||||
} \
|
||||
} \
|
||||
if (_count != (head)->hh.tbl->num_items) { \
|
||||
HASH_OOPS("invalid hh item count %d, actual %d\n", \
|
||||
(head)->hh.tbl->num_items, _count ); \
|
||||
} \
|
||||
/* traverse hh in app order; check next/prev integrity, count */ \
|
||||
_count = 0; \
|
||||
_prev = NULL; \
|
||||
_thh = &(head)->hh; \
|
||||
while (_thh) { \
|
||||
_count++; \
|
||||
if (_prev !=(char*)(_thh->prev)) { \
|
||||
HASH_OOPS("invalid prev %p, actual %p\n", \
|
||||
_thh->prev, _prev ); \
|
||||
} \
|
||||
_prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \
|
||||
_thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \
|
||||
(head)->hh.tbl->hho) : NULL ); \
|
||||
} \
|
||||
if (_count != (head)->hh.tbl->num_items) { \
|
||||
HASH_OOPS("invalid app item count %d, actual %d\n", \
|
||||
(head)->hh.tbl->num_items, _count ); \
|
||||
} \
|
||||
} \
|
||||
} while (0)
|
||||
#else
|
||||
#define HASH_FSCK(hh,head)
|
||||
#endif
|
||||
|
||||
/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
|
||||
* the descriptor to which this macro is defined for tuning the hash function.
|
||||
* The app can #include <unistd.h> to get the prototype for write(2). */
|
||||
#ifdef HASH_EMIT_KEYS
|
||||
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \
|
||||
do { \
|
||||
unsigned _klen = fieldlen; \
|
||||
write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \
|
||||
write(HASH_EMIT_KEYS, keyptr, fieldlen); \
|
||||
} while (0)
|
||||
#else
|
||||
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
|
||||
#endif
|
||||
|
||||
/* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */
|
||||
#ifdef HASH_FUNCTION
|
||||
#define HASH_FCN HASH_FUNCTION
|
||||
#else
|
||||
#define HASH_FCN HASH_JEN
|
||||
#endif
|
||||
|
||||
/* The Bernstein hash function, used in Perl prior to v5.6 */
|
||||
#define HASH_BER(key,keylen,num_bkts,hashv,bkt) \
|
||||
do { \
|
||||
unsigned _hb_keylen=keylen; \
|
||||
char *_hb_key=(char*)(key); \
|
||||
(hashv) = 0; \
|
||||
while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \
|
||||
bkt = (hashv) & (num_bkts-1); \
|
||||
} while (0)
|
||||
|
||||
|
||||
/* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at
|
||||
* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */
|
||||
#define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \
|
||||
do { \
|
||||
unsigned _sx_i; \
|
||||
char *_hs_key=(char*)(key); \
|
||||
hashv = 0; \
|
||||
for(_sx_i=0; _sx_i < keylen; _sx_i++) \
|
||||
hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \
|
||||
bkt = hashv & (num_bkts-1); \
|
||||
} while (0)
|
||||
|
||||
#define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \
|
||||
do { \
|
||||
unsigned _fn_i; \
|
||||
char *_hf_key=(char*)(key); \
|
||||
hashv = 2166136261UL; \
|
||||
for(_fn_i=0; _fn_i < keylen; _fn_i++) \
|
||||
hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \
|
||||
bkt = hashv & (num_bkts-1); \
|
||||
} while(0)
|
||||
|
||||
#define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \
|
||||
do { \
|
||||
unsigned _ho_i; \
|
||||
char *_ho_key=(char*)(key); \
|
||||
hashv = 0; \
|
||||
for(_ho_i=0; _ho_i < keylen; _ho_i++) { \
|
||||
hashv += _ho_key[_ho_i]; \
|
||||
hashv += (hashv << 10); \
|
||||
hashv ^= (hashv >> 6); \
|
||||
} \
|
||||
hashv += (hashv << 3); \
|
||||
hashv ^= (hashv >> 11); \
|
||||
hashv += (hashv << 15); \
|
||||
bkt = hashv & (num_bkts-1); \
|
||||
} while(0)
|
||||
|
||||
#define HASH_JEN_MIX(a,b,c) \
|
||||
do { \
|
||||
a -= b; a -= c; a ^= ( c >> 13 ); \
|
||||
b -= c; b -= a; b ^= ( a << 8 ); \
|
||||
c -= a; c -= b; c ^= ( b >> 13 ); \
|
||||
a -= b; a -= c; a ^= ( c >> 12 ); \
|
||||
b -= c; b -= a; b ^= ( a << 16 ); \
|
||||
c -= a; c -= b; c ^= ( b >> 5 ); \
|
||||
a -= b; a -= c; a ^= ( c >> 3 ); \
|
||||
b -= c; b -= a; b ^= ( a << 10 ); \
|
||||
c -= a; c -= b; c ^= ( b >> 15 ); \
|
||||
} while (0)
|
||||
|
||||
#define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \
|
||||
do { \
|
||||
unsigned _hj_i,_hj_j,_hj_k; \
|
||||
char *_hj_key=(char*)(key); \
|
||||
hashv = 0xfeedbeef; \
|
||||
_hj_i = _hj_j = 0x9e3779b9; \
|
||||
_hj_k = (unsigned)keylen; \
|
||||
while (_hj_k >= 12) { \
|
||||
_hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \
|
||||
+ ( (unsigned)_hj_key[2] << 16 ) \
|
||||
+ ( (unsigned)_hj_key[3] << 24 ) ); \
|
||||
_hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \
|
||||
+ ( (unsigned)_hj_key[6] << 16 ) \
|
||||
+ ( (unsigned)_hj_key[7] << 24 ) ); \
|
||||
hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \
|
||||
+ ( (unsigned)_hj_key[10] << 16 ) \
|
||||
+ ( (unsigned)_hj_key[11] << 24 ) ); \
|
||||
\
|
||||
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
|
||||
\
|
||||
_hj_key += 12; \
|
||||
_hj_k -= 12; \
|
||||
} \
|
||||
hashv += keylen; \
|
||||
switch ( _hj_k ) { \
|
||||
case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \
|
||||
case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \
|
||||
case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \
|
||||
case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \
|
||||
case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \
|
||||
case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \
|
||||
case 5: _hj_j += _hj_key[4]; \
|
||||
case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \
|
||||
case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \
|
||||
case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \
|
||||
case 1: _hj_i += _hj_key[0]; \
|
||||
} \
|
||||
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
|
||||
bkt = hashv & (num_bkts-1); \
|
||||
} while(0)
|
||||
|
||||
/* The Paul Hsieh hash function */
|
||||
#undef get16bits
|
||||
#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
|
||||
|| defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
|
||||
#define get16bits(d) (*((const uint16_t *) (d)))
|
||||
#endif
|
||||
|
||||
#if !defined (get16bits)
|
||||
#define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \
|
||||
+(uint32_t)(((const uint8_t *)(d))[0]) )
|
||||
#endif
|
||||
#define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \
|
||||
do { \
|
||||
char *_sfh_key=(char*)(key); \
|
||||
uint32_t _sfh_tmp, _sfh_len = keylen; \
|
||||
\
|
||||
int _sfh_rem = _sfh_len & 3; \
|
||||
_sfh_len >>= 2; \
|
||||
hashv = 0xcafebabe; \
|
||||
\
|
||||
/* Main loop */ \
|
||||
for (;_sfh_len > 0; _sfh_len--) { \
|
||||
hashv += get16bits (_sfh_key); \
|
||||
_sfh_tmp = (get16bits (_sfh_key+2) << 11) ^ hashv; \
|
||||
hashv = (hashv << 16) ^ _sfh_tmp; \
|
||||
_sfh_key += 2*sizeof (uint16_t); \
|
||||
hashv += hashv >> 11; \
|
||||
} \
|
||||
\
|
||||
/* Handle end cases */ \
|
||||
switch (_sfh_rem) { \
|
||||
case 3: hashv += get16bits (_sfh_key); \
|
||||
hashv ^= hashv << 16; \
|
||||
hashv ^= _sfh_key[sizeof (uint16_t)] << 18; \
|
||||
hashv += hashv >> 11; \
|
||||
break; \
|
||||
case 2: hashv += get16bits (_sfh_key); \
|
||||
hashv ^= hashv << 11; \
|
||||
hashv += hashv >> 17; \
|
||||
break; \
|
||||
case 1: hashv += *_sfh_key; \
|
||||
hashv ^= hashv << 10; \
|
||||
hashv += hashv >> 1; \
|
||||
} \
|
||||
\
|
||||
/* Force "avalanching" of final 127 bits */ \
|
||||
hashv ^= hashv << 3; \
|
||||
hashv += hashv >> 5; \
|
||||
hashv ^= hashv << 4; \
|
||||
hashv += hashv >> 17; \
|
||||
hashv ^= hashv << 25; \
|
||||
hashv += hashv >> 6; \
|
||||
bkt = hashv & (num_bkts-1); \
|
||||
} while(0)
|
||||
|
||||
#ifdef HASH_USING_NO_STRICT_ALIASING
|
||||
/* The MurmurHash exploits some CPU's (x86,x86_64) tolerance for unaligned reads.
|
||||
* For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error.
|
||||
* MurmurHash uses the faster approach only on CPU's where we know it's safe.
|
||||
*
|
||||
* Note the preprocessor built-in defines can be emitted using:
|
||||
*
|
||||
* gcc -m64 -dM -E - < /dev/null (on gcc)
|
||||
* cc -## a.c (where a.c is a simple test file) (Sun Studio)
|
||||
*/
|
||||
#if (defined(__i386__) || defined(__x86_64__) || defined(_M_IX86))
|
||||
#define MUR_GETBLOCK(p,i) p[i]
|
||||
#else /* non intel */
|
||||
#define MUR_PLUS0_ALIGNED(p) (((unsigned long)p & 0x3) == 0)
|
||||
#define MUR_PLUS1_ALIGNED(p) (((unsigned long)p & 0x3) == 1)
|
||||
#define MUR_PLUS2_ALIGNED(p) (((unsigned long)p & 0x3) == 2)
|
||||
#define MUR_PLUS3_ALIGNED(p) (((unsigned long)p & 0x3) == 3)
|
||||
#define WP(p) ((uint32_t*)((unsigned long)(p) & ~3UL))
|
||||
#if (defined(__BIG_ENDIAN__) || defined(SPARC) || defined(__ppc__) || defined(__ppc64__))
|
||||
#define MUR_THREE_ONE(p) ((((*WP(p))&0x00ffffff) << 8) | (((*(WP(p)+1))&0xff000000) >> 24))
|
||||
#define MUR_TWO_TWO(p) ((((*WP(p))&0x0000ffff) <<16) | (((*(WP(p)+1))&0xffff0000) >> 16))
|
||||
#define MUR_ONE_THREE(p) ((((*WP(p))&0x000000ff) <<24) | (((*(WP(p)+1))&0xffffff00) >> 8))
|
||||
#else /* assume little endian non-intel */
|
||||
#define MUR_THREE_ONE(p) ((((*WP(p))&0xffffff00) >> 8) | (((*(WP(p)+1))&0x000000ff) << 24))
|
||||
#define MUR_TWO_TWO(p) ((((*WP(p))&0xffff0000) >>16) | (((*(WP(p)+1))&0x0000ffff) << 16))
|
||||
#define MUR_ONE_THREE(p) ((((*WP(p))&0xff000000) >>24) | (((*(WP(p)+1))&0x00ffffff) << 8))
|
||||
#endif
|
||||
#define MUR_GETBLOCK(p,i) (MUR_PLUS0_ALIGNED(p) ? ((p)[i]) : \
|
||||
(MUR_PLUS1_ALIGNED(p) ? MUR_THREE_ONE(p) : \
|
||||
(MUR_PLUS2_ALIGNED(p) ? MUR_TWO_TWO(p) : \
|
||||
MUR_ONE_THREE(p))))
|
||||
#endif
|
||||
#define MUR_ROTL32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
|
||||
#define MUR_FMIX(_h) \
|
||||
do { \
|
||||
_h ^= _h >> 16; \
|
||||
_h *= 0x85ebca6b; \
|
||||
_h ^= _h >> 13; \
|
||||
_h *= 0xc2b2ae35l; \
|
||||
_h ^= _h >> 16; \
|
||||
} while(0)
|
||||
|
||||
#define HASH_MUR(key,keylen,num_bkts,hashv,bkt) \
|
||||
do { \
|
||||
const uint8_t *_mur_data = (const uint8_t*)(key); \
|
||||
const int _mur_nblocks = (keylen) / 4; \
|
||||
uint32_t _mur_h1 = 0xf88D5353; \
|
||||
uint32_t _mur_c1 = 0xcc9e2d51; \
|
||||
uint32_t _mur_c2 = 0x1b873593; \
|
||||
uint32_t _mur_k1 = 0; \
|
||||
const uint8_t *_mur_tail; \
|
||||
const uint32_t *_mur_blocks = (const uint32_t*)(_mur_data+_mur_nblocks*4); \
|
||||
int _mur_i; \
|
||||
for(_mur_i = -_mur_nblocks; _mur_i; _mur_i++) { \
|
||||
_mur_k1 = MUR_GETBLOCK(_mur_blocks,_mur_i); \
|
||||
_mur_k1 *= _mur_c1; \
|
||||
_mur_k1 = MUR_ROTL32(_mur_k1,15); \
|
||||
_mur_k1 *= _mur_c2; \
|
||||
\
|
||||
_mur_h1 ^= _mur_k1; \
|
||||
_mur_h1 = MUR_ROTL32(_mur_h1,13); \
|
||||
_mur_h1 = _mur_h1*5+0xe6546b64; \
|
||||
} \
|
||||
_mur_tail = (const uint8_t*)(_mur_data + _mur_nblocks*4); \
|
||||
_mur_k1=0; \
|
||||
switch((keylen) & 3) { \
|
||||
case 3: _mur_k1 ^= _mur_tail[2] << 16; \
|
||||
case 2: _mur_k1 ^= _mur_tail[1] << 8; \
|
||||
case 1: _mur_k1 ^= _mur_tail[0]; \
|
||||
_mur_k1 *= _mur_c1; \
|
||||
_mur_k1 = MUR_ROTL32(_mur_k1,15); \
|
||||
_mur_k1 *= _mur_c2; \
|
||||
_mur_h1 ^= _mur_k1; \
|
||||
} \
|
||||
_mur_h1 ^= (keylen); \
|
||||
MUR_FMIX(_mur_h1); \
|
||||
hashv = _mur_h1; \
|
||||
bkt = hashv & (num_bkts-1); \
|
||||
} while(0)
|
||||
#endif /* HASH_USING_NO_STRICT_ALIASING */
|
||||
|
||||
/* key comparison function; return 0 if keys equal */
|
||||
#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
|
||||
|
||||
/* iterate over items in a known bucket to find desired item */
|
||||
#define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \
|
||||
do { \
|
||||
if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \
|
||||
else out=NULL; \
|
||||
while (out) { \
|
||||
if ((out)->hh.keylen == keylen_in) { \
|
||||
if ((HASH_KEYCMP((out)->hh.key,keyptr,keylen_in)) == 0) break; \
|
||||
} \
|
||||
if ((out)->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,(out)->hh.hh_next)); \
|
||||
else out = NULL; \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
/* add an item to a bucket */
|
||||
#define HASH_ADD_TO_BKT(head,addhh) \
|
||||
do { \
|
||||
head.count++; \
|
||||
(addhh)->hh_next = head.hh_head; \
|
||||
(addhh)->hh_prev = NULL; \
|
||||
if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \
|
||||
(head).hh_head=addhh; \
|
||||
if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \
|
||||
&& (addhh)->tbl->noexpand != 1) { \
|
||||
HASH_EXPAND_BUCKETS((addhh)->tbl); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
/* remove an item from a given bucket */
|
||||
#define HASH_DEL_IN_BKT(hh,head,hh_del) \
|
||||
(head).count--; \
|
||||
if ((head).hh_head == hh_del) { \
|
||||
(head).hh_head = hh_del->hh_next; \
|
||||
} \
|
||||
if (hh_del->hh_prev) { \
|
||||
hh_del->hh_prev->hh_next = hh_del->hh_next; \
|
||||
} \
|
||||
if (hh_del->hh_next) { \
|
||||
hh_del->hh_next->hh_prev = hh_del->hh_prev; \
|
||||
}
|
||||
|
||||
/* Bucket expansion has the effect of doubling the number of buckets
|
||||
* and redistributing the items into the new buckets. Ideally the
|
||||
* items will distribute more or less evenly into the new buckets
|
||||
* (the extent to which this is true is a measure of the quality of
|
||||
* the hash function as it applies to the key domain).
|
||||
*
|
||||
* With the items distributed into more buckets, the chain length
|
||||
* (item count) in each bucket is reduced. Thus by expanding buckets
|
||||
* the hash keeps a bound on the chain length. This bounded chain
|
||||
* length is the essence of how a hash provides constant time lookup.
|
||||
*
|
||||
* The calculation of tbl->ideal_chain_maxlen below deserves some
|
||||
* explanation. First, keep in mind that we're calculating the ideal
|
||||
* maximum chain length based on the *new* (doubled) bucket count.
|
||||
* In fractions this is just n/b (n=number of items,b=new num buckets).
|
||||
* Since the ideal chain length is an integer, we want to calculate
|
||||
* ceil(n/b). We don't depend on floating point arithmetic in this
|
||||
* hash, so to calculate ceil(n/b) with integers we could write
|
||||
*
|
||||
* ceil(n/b) = (n/b) + ((n%b)?1:0)
|
||||
*
|
||||
* and in fact a previous version of this hash did just that.
|
||||
* But now we have improved things a bit by recognizing that b is
|
||||
* always a power of two. We keep its base 2 log handy (call it lb),
|
||||
* so now we can write this with a bit shift and logical AND:
|
||||
*
|
||||
* ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0)
|
||||
*
|
||||
*/
|
||||
#define HASH_EXPAND_BUCKETS(tbl) \
|
||||
do { \
|
||||
unsigned _he_bkt; \
|
||||
unsigned _he_bkt_i; \
|
||||
struct UT_hash_handle *_he_thh, *_he_hh_nxt; \
|
||||
UT_hash_bucket *_he_new_buckets, *_he_newbkt; \
|
||||
_he_new_buckets = (UT_hash_bucket*)uthash_malloc( \
|
||||
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
|
||||
if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \
|
||||
memset(_he_new_buckets, 0, \
|
||||
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
|
||||
tbl->ideal_chain_maxlen = \
|
||||
(tbl->num_items >> (tbl->log2_num_buckets+1)) + \
|
||||
((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \
|
||||
tbl->nonideal_items = 0; \
|
||||
for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \
|
||||
{ \
|
||||
_he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \
|
||||
while (_he_thh) { \
|
||||
_he_hh_nxt = _he_thh->hh_next; \
|
||||
HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \
|
||||
_he_newbkt = &(_he_new_buckets[ _he_bkt ]); \
|
||||
if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \
|
||||
tbl->nonideal_items++; \
|
||||
_he_newbkt->expand_mult = _he_newbkt->count / \
|
||||
tbl->ideal_chain_maxlen; \
|
||||
} \
|
||||
_he_thh->hh_prev = NULL; \
|
||||
_he_thh->hh_next = _he_newbkt->hh_head; \
|
||||
if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \
|
||||
_he_thh; \
|
||||
_he_newbkt->hh_head = _he_thh; \
|
||||
_he_thh = _he_hh_nxt; \
|
||||
} \
|
||||
} \
|
||||
uthash_free( tbl->buckets, tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \
|
||||
tbl->num_buckets *= 2; \
|
||||
tbl->log2_num_buckets++; \
|
||||
tbl->buckets = _he_new_buckets; \
|
||||
tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \
|
||||
(tbl->ineff_expands+1) : 0; \
|
||||
if (tbl->ineff_expands > 1) { \
|
||||
tbl->noexpand=1; \
|
||||
uthash_noexpand_fyi(tbl); \
|
||||
} \
|
||||
uthash_expand_fyi(tbl); \
|
||||
} while(0)
|
||||
|
||||
|
||||
/* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */
|
||||
/* Note that HASH_SORT assumes the hash handle name to be hh.
|
||||
* HASH_SRT was added to allow the hash handle name to be passed in. */
|
||||
#define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn)
|
||||
#define HASH_SRT(hh,head,cmpfcn) \
|
||||
do { \
|
||||
unsigned _hs_i; \
|
||||
unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \
|
||||
struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \
|
||||
if (head) { \
|
||||
_hs_insize = 1; \
|
||||
_hs_looping = 1; \
|
||||
_hs_list = &((head)->hh); \
|
||||
while (_hs_looping) { \
|
||||
_hs_p = _hs_list; \
|
||||
_hs_list = NULL; \
|
||||
_hs_tail = NULL; \
|
||||
_hs_nmerges = 0; \
|
||||
while (_hs_p) { \
|
||||
_hs_nmerges++; \
|
||||
_hs_q = _hs_p; \
|
||||
_hs_psize = 0; \
|
||||
for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \
|
||||
_hs_psize++; \
|
||||
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
|
||||
((void*)((char*)(_hs_q->next) + \
|
||||
(head)->hh.tbl->hho)) : NULL); \
|
||||
if (! (_hs_q) ) break; \
|
||||
} \
|
||||
_hs_qsize = _hs_insize; \
|
||||
while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \
|
||||
if (_hs_psize == 0) { \
|
||||
_hs_e = _hs_q; \
|
||||
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
|
||||
((void*)((char*)(_hs_q->next) + \
|
||||
(head)->hh.tbl->hho)) : NULL); \
|
||||
_hs_qsize--; \
|
||||
} else if ( (_hs_qsize == 0) || !(_hs_q) ) { \
|
||||
_hs_e = _hs_p; \
|
||||
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
|
||||
((void*)((char*)(_hs_p->next) + \
|
||||
(head)->hh.tbl->hho)) : NULL); \
|
||||
_hs_psize--; \
|
||||
} else if (( \
|
||||
cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \
|
||||
DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \
|
||||
) <= 0) { \
|
||||
_hs_e = _hs_p; \
|
||||
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
|
||||
((void*)((char*)(_hs_p->next) + \
|
||||
(head)->hh.tbl->hho)) : NULL); \
|
||||
_hs_psize--; \
|
||||
} else { \
|
||||
_hs_e = _hs_q; \
|
||||
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
|
||||
((void*)((char*)(_hs_q->next) + \
|
||||
(head)->hh.tbl->hho)) : NULL); \
|
||||
_hs_qsize--; \
|
||||
} \
|
||||
if ( _hs_tail ) { \
|
||||
_hs_tail->next = ((_hs_e) ? \
|
||||
ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \
|
||||
} else { \
|
||||
_hs_list = _hs_e; \
|
||||
} \
|
||||
_hs_e->prev = ((_hs_tail) ? \
|
||||
ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \
|
||||
_hs_tail = _hs_e; \
|
||||
} \
|
||||
_hs_p = _hs_q; \
|
||||
} \
|
||||
_hs_tail->next = NULL; \
|
||||
if ( _hs_nmerges <= 1 ) { \
|
||||
_hs_looping=0; \
|
||||
(head)->hh.tbl->tail = _hs_tail; \
|
||||
DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \
|
||||
} \
|
||||
_hs_insize *= 2; \
|
||||
} \
|
||||
HASH_FSCK(hh,head); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/* This function selects items from one hash into another hash.
|
||||
* The end result is that the selected items have dual presence
|
||||
* in both hashes. There is no copy of the items made; rather
|
||||
* they are added into the new hash through a secondary hash
|
||||
* hash handle that must be present in the structure. */
|
||||
#define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \
|
||||
do { \
|
||||
unsigned _src_bkt, _dst_bkt; \
|
||||
void *_last_elt=NULL, *_elt; \
|
||||
UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \
|
||||
ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \
|
||||
if (src) { \
|
||||
for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \
|
||||
for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \
|
||||
_src_hh; \
|
||||
_src_hh = _src_hh->hh_next) { \
|
||||
_elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \
|
||||
if (cond(_elt)) { \
|
||||
_dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \
|
||||
_dst_hh->key = _src_hh->key; \
|
||||
_dst_hh->keylen = _src_hh->keylen; \
|
||||
_dst_hh->hashv = _src_hh->hashv; \
|
||||
_dst_hh->prev = _last_elt; \
|
||||
_dst_hh->next = NULL; \
|
||||
if (_last_elt_hh) { _last_elt_hh->next = _elt; } \
|
||||
if (!dst) { \
|
||||
DECLTYPE_ASSIGN(dst,_elt); \
|
||||
HASH_MAKE_TABLE(hh_dst,dst); \
|
||||
} else { \
|
||||
_dst_hh->tbl = (dst)->hh_dst.tbl; \
|
||||
} \
|
||||
HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \
|
||||
HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \
|
||||
(dst)->hh_dst.tbl->num_items++; \
|
||||
_last_elt = _elt; \
|
||||
_last_elt_hh = _dst_hh; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
HASH_FSCK(hh_dst,dst); \
|
||||
} while (0)
|
||||
|
||||
#define HASH_CLEAR(hh,head) \
|
||||
do { \
|
||||
if (head) { \
|
||||
uthash_free((head)->hh.tbl->buckets, \
|
||||
(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket)); \
|
||||
HASH_BLOOM_FREE((head)->hh.tbl); \
|
||||
uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \
|
||||
(head)=NULL; \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#ifdef NO_DECLTYPE
|
||||
#define HASH_ITER(hh,head,el,tmp) \
|
||||
for((el)=(head), (*(char**)(&(tmp)))=(char*)((head)?(head)->hh.next:NULL); \
|
||||
el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL))
|
||||
#else
|
||||
#define HASH_ITER(hh,head,el,tmp) \
|
||||
for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL); \
|
||||
el; (el)=(tmp),(tmp)=DECLTYPE(el)((tmp)?(tmp)->hh.next:NULL))
|
||||
#endif
|
||||
|
||||
/* obtain a count of items in the hash */
|
||||
#define HASH_COUNT(head) HASH_CNT(hh,head)
|
||||
#define HASH_CNT(hh,head) ((head)?((head)->hh.tbl->num_items):0)
|
||||
|
||||
typedef struct UT_hash_bucket {
|
||||
struct UT_hash_handle *hh_head;
|
||||
unsigned count;
|
||||
|
||||
/* expand_mult is normally set to 0. In this situation, the max chain length
|
||||
* threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If
|
||||
* the bucket's chain exceeds this length, bucket expansion is triggered).
|
||||
* However, setting expand_mult to a non-zero value delays bucket expansion
|
||||
* (that would be triggered by additions to this particular bucket)
|
||||
* until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH.
|
||||
* (The multiplier is simply expand_mult+1). The whole idea of this
|
||||
* multiplier is to reduce bucket expansions, since they are expensive, in
|
||||
* situations where we know that a particular bucket tends to be overused.
|
||||
* It is better to let its chain length grow to a longer yet-still-bounded
|
||||
* value, than to do an O(n) bucket expansion too often.
|
||||
*/
|
||||
unsigned expand_mult;
|
||||
|
||||
} UT_hash_bucket;
|
||||
|
||||
/* random signature used only to find hash tables in external analysis */
|
||||
#define HASH_SIGNATURE 0xa0111fe1
|
||||
#define HASH_BLOOM_SIGNATURE 0xb12220f2
|
||||
|
||||
typedef struct UT_hash_table {
|
||||
UT_hash_bucket *buckets;
|
||||
unsigned num_buckets, log2_num_buckets;
|
||||
unsigned num_items;
|
||||
struct UT_hash_handle *tail; /* tail hh in app order, for fast append */
|
||||
ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */
|
||||
|
||||
/* in an ideal situation (all buckets used equally), no bucket would have
|
||||
* more than ceil(#items/#buckets) items. that's the ideal chain length. */
|
||||
unsigned ideal_chain_maxlen;
|
||||
|
||||
/* nonideal_items is the number of items in the hash whose chain position
|
||||
* exceeds the ideal chain maxlen. these items pay the penalty for an uneven
|
||||
* hash distribution; reaching them in a chain traversal takes >ideal steps */
|
||||
unsigned nonideal_items;
|
||||
|
||||
/* ineffective expands occur when a bucket doubling was performed, but
|
||||
* afterward, more than half the items in the hash had nonideal chain
|
||||
* positions. If this happens on two consecutive expansions we inhibit any
|
||||
* further expansion, as it's not helping; this happens when the hash
|
||||
* function isn't a good fit for the key domain. When expansion is inhibited
|
||||
* the hash will still work, albeit no longer in constant time. */
|
||||
unsigned ineff_expands, noexpand;
|
||||
|
||||
uint32_t signature; /* used only to find hash tables in external analysis */
|
||||
#ifdef HASH_BLOOM
|
||||
uint32_t bloom_sig; /* used only to test bloom exists in external analysis */
|
||||
uint8_t *bloom_bv;
|
||||
char bloom_nbits;
|
||||
#endif
|
||||
|
||||
} UT_hash_table;
|
||||
|
||||
typedef struct UT_hash_handle {
|
||||
struct UT_hash_table *tbl;
|
||||
void *prev; /* prev element in app order */
|
||||
void *next; /* next element in app order */
|
||||
struct UT_hash_handle *hh_prev; /* previous hh in bucket order */
|
||||
struct UT_hash_handle *hh_next; /* next hh in bucket order */
|
||||
void *key; /* ptr to enclosing struct's key */
|
||||
unsigned keylen; /* enclosing struct's key len */
|
||||
unsigned hashv; /* result of hash-fcn(key) */
|
||||
} UT_hash_handle;
|
||||
|
||||
#endif /* UTHASH_H */
|
11
Makefile.in
11
Makefile.in
@ -111,7 +111,6 @@ INTERFACE_HEADERS = \
|
||||
$(srcdir)/include/clause_list.h \
|
||||
$(srcdir)/include/dswiatoms.h \
|
||||
$(srcdir)/include/udi.h \
|
||||
$(srcdir)/include/rtree_udi.h \
|
||||
$(srcdir)/include/yap_structs.h \
|
||||
$(srcdir)/include/YapInterface.h \
|
||||
$(srcdir)/include/SWI-Prolog.h \
|
||||
@ -263,8 +262,6 @@ C_SOURCES= \
|
||||
$(srcdir)/C/threads.c \
|
||||
$(srcdir)/C/tracer.c $(srcdir)/C/unify.c $(srcdir)/C/userpreds.c \
|
||||
$(srcdir)/C/udi.c \
|
||||
$(srcdir)/packages/udi/rtree.c \
|
||||
$(srcdir)/packages/udi/rtree_udi.c \
|
||||
$(srcdir)/C/utilpreds.c $(srcdir)/C/write.c $(srcdir)/console/yap.c \
|
||||
$(srcdir)/C/yap-args.c \
|
||||
$(srcdir)/C/ypstdio.c \
|
||||
@ -371,7 +368,7 @@ ENGINE_OBJECTS = \
|
||||
parser.o qlyr.o qlyw.o range.o \
|
||||
save.o scanner.o sort.o stdpreds.o \
|
||||
sysbits.o threads.o tracer.o \
|
||||
udi.o rtree.o rtree_udi.o\
|
||||
udi.o\
|
||||
unify.o userpreds.o utilpreds.o \
|
||||
yap-args.o write.o \
|
||||
blobs.o swi.o ypstdio.o $(IOLIB_OBJECTS) @MPI_OBJS@
|
||||
@ -475,12 +472,6 @@ sysbits.o: $(srcdir)/C/sysbits.c config.h
|
||||
udi.o: $(srcdir)/C/udi.c config.h
|
||||
$(CC) -c $(C_INTERF_FLAGS) $(srcdir)/C/udi.c -o $@
|
||||
|
||||
rtree.o: $(srcdir)/packages/udi/rtree.c config.h
|
||||
$(CC) -c $(C_INTERF_FLAGS) $(srcdir)/packages/udi/rtree.c -o $@
|
||||
|
||||
rtree_udi.o: $(srcdir)/packages/udi/rtree_udi.c config.h
|
||||
$(CC) -c $(C_INTERF_FLAGS) $(srcdir)/packages/udi/rtree_udi.c -o $@
|
||||
|
||||
yap.o: $(srcdir)/console/yap.c config.h
|
||||
$(CC) -c $(CFLAGS) -I$(srcdir)/include $(srcdir)/console/yap.c -o $@
|
||||
|
||||
|
@ -24,6 +24,8 @@
|
||||
/* Should we use gmp ? */
|
||||
#undef HAVE_LIBGMP
|
||||
|
||||
#undef HAVE_LIBJUDY
|
||||
|
||||
/* What MPI libraries are there? */
|
||||
#define HAVE_LIBMPI 0
|
||||
#define HAVE_LIBMPICH
|
||||
@ -67,6 +69,7 @@
|
||||
#undef HAVE_GMP_H
|
||||
#undef HAVE_IEEEFP_H
|
||||
#undef HAVE_IO_H
|
||||
#undef HAVE_JUDY_H
|
||||
#undef HAVE_LIMITS_H
|
||||
#undef HAVE_LOCALE_H
|
||||
#undef HAVE_MACH_O_DYLD_H
|
||||
@ -326,6 +329,10 @@
|
||||
#define USE_GMP 1
|
||||
#endif
|
||||
|
||||
#if HAVE_JUDY_H && HAVE_LIBJUDY
|
||||
#define USE_JUDY 1
|
||||
#endif
|
||||
|
||||
/* Should we use MPI ? */
|
||||
#if defined(HAVE_MPI_H) && (defined(HAVE_LIBMPI) || defined(HAVE_LIBMPICH))
|
||||
#define HAVE_MPI 1
|
||||
|
81
configure
vendored
81
configure
vendored
@ -849,6 +849,7 @@ enable_clpbn_bp
|
||||
with_gmp
|
||||
with_R
|
||||
with_python
|
||||
with_judy
|
||||
with_minisat
|
||||
with_cudd
|
||||
enable_myddas
|
||||
@ -1531,6 +1532,7 @@ Optional Packages:
|
||||
--with-gmp=DIR use GNU Multiple Precision in DIR
|
||||
--with-R=DIR interface to R language
|
||||
--with-python=DIR interface to R language
|
||||
--with-judy=DIR UDI needs judy library
|
||||
--enable-minisat use minisat interface
|
||||
--with-cudd=DIR use CUDD package in DIR
|
||||
--with-java=JAVA_HOME use Java instalation in JAVA_HOME
|
||||
@ -4717,6 +4719,21 @@ fi
|
||||
|
||||
|
||||
|
||||
# Check whether --with-judy was given.
|
||||
if test "${with_judy+set}" = set; then :
|
||||
withval=$with_judy; if test "$withval" = yes; then
|
||||
yap_cv_judy=yes
|
||||
elif test "$withval" = no; then
|
||||
yap_cv_judy=no
|
||||
else
|
||||
yap_cv_judy=$withval
|
||||
fi
|
||||
else
|
||||
yap_cv_judy=yes
|
||||
fi
|
||||
|
||||
|
||||
|
||||
# Check whether --with-minisat was given.
|
||||
if test "${with_minisat+set}" = set; then :
|
||||
withval=$with_minisat; if test "$withval" = yes; then
|
||||
@ -6910,6 +6927,56 @@ else
|
||||
ENABLE_PYTHON="@# "
|
||||
fi
|
||||
|
||||
if test "$yap_cv_judy" != "no"; then
|
||||
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for Judy1Set in -lJudy" >&5
|
||||
$as_echo_n "checking for Judy1Set in -lJudy... " >&6; }
|
||||
if ${ac_cv_lib_Judy_Judy1Set+:} false; then :
|
||||
$as_echo_n "(cached) " >&6
|
||||
else
|
||||
ac_check_lib_save_LIBS=$LIBS
|
||||
LIBS="-lJudy $LIBS"
|
||||
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
|
||||
/* end confdefs.h. */
|
||||
|
||||
/* Override any GCC internal prototype to avoid an error.
|
||||
Use char because int might match the return type of a GCC
|
||||
builtin and then its argument prototype would still apply. */
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
#endif
|
||||
char Judy1Set ();
|
||||
int
|
||||
main ()
|
||||
{
|
||||
return Judy1Set ();
|
||||
;
|
||||
return 0;
|
||||
}
|
||||
_ACEOF
|
||||
if ac_fn_c_try_link "$LINENO"; then :
|
||||
ac_cv_lib_Judy_Judy1Set=yes
|
||||
else
|
||||
ac_cv_lib_Judy_Judy1Set=no
|
||||
fi
|
||||
rm -f core conftest.err conftest.$ac_objext \
|
||||
conftest$ac_exeext conftest.$ac_ext
|
||||
LIBS=$ac_check_lib_save_LIBS
|
||||
fi
|
||||
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_Judy_Judy1Set" >&5
|
||||
$as_echo "$ac_cv_lib_Judy_Judy1Set" >&6; }
|
||||
if test "x$ac_cv_lib_Judy_Judy1Set" = xyes; then :
|
||||
cat >>confdefs.h <<_ACEOF
|
||||
#define HAVE_LIBJUDY 1
|
||||
_ACEOF
|
||||
|
||||
LIBS="-lJudy $LIBS"
|
||||
|
||||
else
|
||||
as_fn_error $? "libJudy not found, UDI will only work with one Index at a time" "$LINENO" 5
|
||||
fi
|
||||
|
||||
fi
|
||||
|
||||
|
||||
if test "$yap_cv_myddas" != "no"
|
||||
then
|
||||
@ -9179,6 +9246,20 @@ fi
|
||||
|
||||
done
|
||||
|
||||
fi
|
||||
if test "$yap_cv_judy" != "no"; then
|
||||
for ac_header in Judy.h
|
||||
do :
|
||||
ac_fn_c_check_header_mongrel "$LINENO" "Judy.h" "ac_cv_header_Judy_h" "$ac_includes_default"
|
||||
if test "x$ac_cv_header_Judy_h" = xyes; then :
|
||||
cat >>confdefs.h <<_ACEOF
|
||||
#define HAVE_JUDY_H 1
|
||||
_ACEOF
|
||||
|
||||
fi
|
||||
|
||||
done
|
||||
|
||||
fi
|
||||
if test "$yap_cv_myddas" != "no"
|
||||
then
|
||||
|
19
configure.in
19
configure.in
@ -254,8 +254,18 @@ AC_ARG_WITH(python,
|
||||
yap_cv_python=$withval
|
||||
fi,
|
||||
[yap_cv_python=no])
|
||||
|
||||
AC_ARG_WITH(judy,
|
||||
[ --with-judy[=DIR] UDI needs judy library],
|
||||
if test "$withval" = yes; then
|
||||
yap_cv_judy=yes
|
||||
elif test "$withval" = no; then
|
||||
yap_cv_judy=no
|
||||
else
|
||||
yap_cv_judy=$withval
|
||||
fi,
|
||||
[yap_cv_judy=yes])
|
||||
|
||||
dnl best test we could do.
|
||||
AC_ARG_WITH(minisat,
|
||||
[ --enable-minisat use minisat interface],
|
||||
if test "$withval" = yes; then
|
||||
@ -869,6 +879,10 @@ else
|
||||
ENABLE_PYTHON="@# "
|
||||
fi
|
||||
|
||||
if test "$yap_cv_judy" != "no"; then
|
||||
AC_CHECK_LIB(Judy, Judy1Set,,[AC_MSG_ERROR([libJudy not found, UDI will only work with one Index at a time])])
|
||||
fi
|
||||
|
||||
dnl if test "$yap_cv_cudd" != "no"
|
||||
dnl then
|
||||
dnl AC_CHECK_LIB(cudd,Cudd_Init)
|
||||
@ -1700,6 +1714,9 @@ if test "$yap_cv_gmp" != "no"
|
||||
then
|
||||
AC_CHECK_HEADERS(gmp.h)
|
||||
fi
|
||||
if test "$yap_cv_judy" != "no"; then
|
||||
AC_CHECK_HEADERS(Judy.h)
|
||||
fi
|
||||
if test "$yap_cv_myddas" != "no"
|
||||
then
|
||||
AC_CHECK_HEADERS(mysql/mysql.h)
|
||||
|
@ -1,24 +0,0 @@
|
||||
#ifndef _RTREE_UDI_
|
||||
#define _RTREE_UDI_
|
||||
|
||||
#ifndef _RTREE_
|
||||
typedef void control_t;
|
||||
#endif
|
||||
|
||||
/*Prolog term from :- udi(a(-,+,+)).
|
||||
User defined index announce
|
||||
*/
|
||||
extern control_t *RtreeUdiInit (Term spec,
|
||||
void *pred,
|
||||
int arity);
|
||||
|
||||
/*this is called in each asserted term that was declared to udi_init*/
|
||||
extern control_t *RtreeUdiInsert (Term term, /*asserted term*/
|
||||
control_t *control,
|
||||
void *clausule); /*to store in tree and return
|
||||
in search*/
|
||||
|
||||
extern void *RtreeUdiSearch (control_t *control);
|
||||
extern int RtreeUdiDestroy(control_t *control);
|
||||
|
||||
#endif /* _RTREE_UDI_ */
|
114
include/udi.h
114
include/udi.h
@ -1,45 +1,85 @@
|
||||
/*
|
||||
* This file is part of the YAP Prolog
|
||||
*
|
||||
* User Defined Indexing was developed by:
|
||||
* David Vaz <davidvaz@dcc.fc.up.pt>
|
||||
* Vitor Santos Costa <vsc@dcc.fc.up.pt>
|
||||
*
|
||||
* UDI Indexing Interface:
|
||||
*
|
||||
* Each new indexing mechanism should register it self by filling up a
|
||||
* UdiControlBlock and calling Yap_UdiRegister(UdiControlBlock).
|
||||
*
|
||||
* UdiControlBlock has the main declaration that triggers the
|
||||
* indexing structure as well as the pointers to the needed functions
|
||||
* called at the appropriate times.
|
||||
*
|
||||
* For now each indexing structure only works with a single argument
|
||||
* even when multiple arguments are indexed with the same struture.
|
||||
*
|
||||
* TODO: think of alternative ways of support both cases, e.g. a rtree
|
||||
* does not benefit from multiple rtree indexing, but a hash table do
|
||||
*/
|
||||
|
||||
/*chamada a cada index/2
|
||||
controi estrutura de control, para definir a indexação, contem a
|
||||
rtree p.e.
|
||||
retorna a estrutura de control
|
||||
*/
|
||||
typedef void *
|
||||
(* Yap_UdiInit)(
|
||||
Term spec, /* mode spec */
|
||||
void *pred, /* pass predicate information */
|
||||
int arity);
|
||||
/* This is called upon udi mode spec call, and the purpose is to allow
|
||||
* the indexing struture to initialize itself.
|
||||
* Should return the need opaque struture to be used in future calls
|
||||
*
|
||||
* arg is used to track the specific call, on multiple indexing with the
|
||||
* same struture
|
||||
*/
|
||||
typedef void * (* Yap_UdiInit)
|
||||
(YAP_Term spec,
|
||||
int arg, /* argument regarding this call */
|
||||
int arity);
|
||||
|
||||
/*chamada a cada assert*/
|
||||
typedef void *
|
||||
(* Yap_UdiInsert)(Term t, /* termo asserted */
|
||||
void *control, /* estrutura de control*/
|
||||
void *clausule); /* valor a guardar na arvore, para retornar na pesquisa */
|
||||
/* Upon each assert the struture insert method is called to perform
|
||||
* its work
|
||||
*/
|
||||
typedef void * (* Yap_UdiInsert)
|
||||
(void *control, /* indexing structure opaque handle */
|
||||
YAP_Term term, /* asserted argument */
|
||||
int arg, /* argument regarding this call */
|
||||
void *data); /* value to return on search */
|
||||
|
||||
/* chamada cada vez que um predicado indexado aparece no código
|
||||
Returns:
|
||||
NULL quando não há indexação usavel no predicado (fallback to
|
||||
yap indexing)
|
||||
FALSE
|
||||
TRY_RETRY_TRUST quando há resultados positivos
|
||||
*/
|
||||
typedef void *
|
||||
(* Yap_UdiSearch)(void * control);
|
||||
/* Callback for each value found in a search
|
||||
* if it returns FALSE the search should be immediately aborted
|
||||
*/
|
||||
typedef int (* Yap_UdiCallback)
|
||||
(void *key, /* index key */
|
||||
void *data, /* data */
|
||||
void *arg); /* auxiliary data to callback */
|
||||
|
||||
/* chamada cada vez que um predicado indexado aparece no código
|
||||
Returns:
|
||||
NULL quando não há indexação usavel no predicado (fallback to
|
||||
yap indexing)
|
||||
FALSE
|
||||
TRY_RETRY_TRUST quando há resultados positivos
|
||||
*/
|
||||
typedef int
|
||||
(* Yap_UdiDestroy)(void * control);
|
||||
/* Called upon search
|
||||
*
|
||||
* If there is any search to do with this structure should return >= 0
|
||||
* corresponding to the values found
|
||||
*
|
||||
* returns -1 if there is nothing to search with this indexing structure
|
||||
* e.g. a Variable as argument
|
||||
*/
|
||||
typedef int (* Yap_UdiSearch)
|
||||
(void * control, /* indexing structure opaque handle */
|
||||
int arg, /* argument regarding this call */
|
||||
Yap_UdiCallback f, /* callback on each found value */
|
||||
void *args); /* auxiliary data to callback */
|
||||
|
||||
/* Called upon abolish of the term
|
||||
* to allow for a clean destroy of the indexing structures
|
||||
*/
|
||||
typedef int (* Yap_UdiDestroy)
|
||||
(void * control);
|
||||
|
||||
/*
|
||||
* Main structure used in UDI
|
||||
*/
|
||||
typedef struct udi_control_block {
|
||||
Yap_UdiInit init;
|
||||
Yap_UdiInsert insert;
|
||||
Yap_UdiSearch search;
|
||||
YAP_Atom decl; //atom that triggers this indexing structure
|
||||
Yap_UdiInit init;
|
||||
Yap_UdiInsert insert;
|
||||
Yap_UdiSearch search;
|
||||
Yap_UdiDestroy destroy;
|
||||
} *UdiControlBlock;
|
||||
} * UdiControlBlock;
|
||||
|
||||
/* Register a new indexing structure */
|
||||
void Yap_UdiRegister(UdiControlBlock);
|
||||
|
1
packages/udi
Submodule
1
packages/udi
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit 13ae724d30e4c9dd56ddde63cba4a34f1844c099
|
@ -1,7 +0,0 @@
|
||||
This directory contains support for user defined indexers, currently:
|
||||
|
||||
- RTrees
|
||||
|
||||
For Examples and Tests proceed as follows:
|
||||
|
||||
git clone git://yap.dcc.fc.up.pt/udi-examples
|
@ -1,524 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <float.h>
|
||||
|
||||
#include "rtree.h"
|
||||
|
||||
static node_t RTreeNewNode (void);
|
||||
static void RTreeDestroyNode (node_t);
|
||||
static void RTreeNodeInit (node_t);
|
||||
|
||||
static int RTreeSearchNode (node_t, rect_t, SearchHitCallback, void *);
|
||||
static int RTreeInsertNode (node_t, int, rect_t,void *,node_t *);
|
||||
|
||||
static int RTreePickBranch (rect_t, node_t);
|
||||
static int RTreeAddBranch(node_t, branch_t, node_t *);
|
||||
static void RTreeSplitNode (node_t, branch_t, node_t *);
|
||||
|
||||
static void RTreePickSeeds(partition_t *, node_t, node_t);
|
||||
static void RTreeNodeAddBranch(rect_t *, node_t, branch_t);
|
||||
static void RTreePickNext(partition_t *, node_t, node_t);
|
||||
|
||||
static rect_t RTreeNodeCover(node_t);
|
||||
|
||||
static double RectArea (rect_t);
|
||||
static rect_t RectCombine (rect_t, rect_t);
|
||||
static int RectOverlap (rect_t, rect_t);
|
||||
static void RectPrint (rect_t);
|
||||
|
||||
static partition_t PartitionNew (void);
|
||||
static void PartitionPush (partition_t *, branch_t);
|
||||
static branch_t PartitionPop (partition_t *);
|
||||
static branch_t PartitionGet (partition_t *, int);
|
||||
|
||||
rtree_t RTreeNew (void)
|
||||
{
|
||||
rtree_t t;
|
||||
t = RTreeNewNode();
|
||||
t->level = 0; /*leaf*/
|
||||
return t;
|
||||
}
|
||||
|
||||
void RTreeDestroy (rtree_t t)
|
||||
{
|
||||
if (t)
|
||||
RTreeDestroyNode (t);
|
||||
}
|
||||
|
||||
static node_t RTreeNewNode (void)
|
||||
{
|
||||
node_t n;
|
||||
|
||||
n = (node_t) malloc (sizeof(*n));
|
||||
assert(n);
|
||||
RTreeNodeInit(n);
|
||||
return n;
|
||||
}
|
||||
|
||||
static void RTreeDestroyNode (node_t node)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (node->level == 0) /* leaf level*/
|
||||
{
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (node->branch[i].child)
|
||||
;/* allow user free data*/
|
||||
else
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (node->branch[i].child)
|
||||
RTreeDestroyNode (node->branch[i].child);
|
||||
else
|
||||
break;
|
||||
}
|
||||
free (node);
|
||||
}
|
||||
|
||||
static void RTreeNodeInit (node_t n)
|
||||
{
|
||||
memset((void *) n,0, sizeof(*n));
|
||||
n->level = -1;
|
||||
}
|
||||
|
||||
int RTreeSearch (rtree_t t, rect_t s, SearchHitCallback f, void *arg)
|
||||
{
|
||||
assert(t);
|
||||
return RTreeSearchNode(t,s,f,arg);
|
||||
}
|
||||
|
||||
static int RTreeSearchNode (node_t n, rect_t s, SearchHitCallback f, void *arg)
|
||||
{
|
||||
int i;
|
||||
int c = 0;
|
||||
|
||||
if (n->level > 0)
|
||||
{
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (n->branch[i].child &&
|
||||
RectOverlap (s,n->branch[i].mbr))
|
||||
c += RTreeSearchNode ((node_t) n->branch[i].child, s, f, arg);
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (n->branch[i].child &&
|
||||
RectOverlap (s,n->branch[i].mbr))
|
||||
{
|
||||
c ++;
|
||||
if (f)
|
||||
if ( !f(n->branch[i].mbr,n->branch[i].child,arg))
|
||||
return c;
|
||||
}
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
void RTreeInsert (rtree_t *t, rect_t r, void *data)
|
||||
{
|
||||
node_t n2;
|
||||
node_t new_root;
|
||||
branch_t b;
|
||||
assert(t && *t);
|
||||
|
||||
if (RTreeInsertNode(*t, 0, r, data, &n2))
|
||||
/* deal with root split */
|
||||
{
|
||||
new_root = RTreeNewNode();
|
||||
new_root->level = (*t)->level + 1;
|
||||
b.mbr = RTreeNodeCover(*t);
|
||||
b.child = (void *) *t;
|
||||
RTreeAddBranch(new_root, b, NULL);
|
||||
b.mbr = RTreeNodeCover(n2);
|
||||
b.child = (void *) n2;
|
||||
RTreeAddBranch(new_root, b, NULL);
|
||||
*t = new_root;
|
||||
}
|
||||
}
|
||||
|
||||
static int RTreeInsertNode (node_t n, int level,
|
||||
rect_t r, void *data,
|
||||
node_t *new_node)
|
||||
{
|
||||
int i;
|
||||
node_t n2;
|
||||
branch_t b;
|
||||
|
||||
assert(n && new_node);
|
||||
assert(level >= 0 && level <= n->level);
|
||||
|
||||
if (n->level > level)
|
||||
{
|
||||
i = RTreePickBranch(r,n);
|
||||
if (!RTreeInsertNode((node_t) n->branch[i].child, level,
|
||||
r, data,&n2)) /* not split */
|
||||
{
|
||||
n->branch[i].mbr = RectCombine(r,n->branch[i].mbr);
|
||||
return FALSE;
|
||||
}
|
||||
else /* node split */
|
||||
{
|
||||
n->branch[i].mbr = RTreeNodeCover(n->branch[i].child);
|
||||
b.child = n2;
|
||||
b.mbr = RTreeNodeCover(n2);
|
||||
return RTreeAddBranch(n, b, new_node);
|
||||
}
|
||||
}
|
||||
else /*insert level*/
|
||||
{
|
||||
b.mbr = r;
|
||||
b.child = data;
|
||||
return RTreeAddBranch(n, b, new_node);
|
||||
}
|
||||
}
|
||||
|
||||
static int RTreeAddBranch(node_t n, branch_t b, node_t *new_node)
|
||||
{
|
||||
int i;
|
||||
|
||||
assert(n);
|
||||
|
||||
if (n->count < MAXCARD) /*split not necessary*/
|
||||
{
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (n->branch[i].child == NULL)
|
||||
{
|
||||
n->branch[i] = b;
|
||||
n->count ++;
|
||||
break;
|
||||
}
|
||||
return FALSE;
|
||||
}
|
||||
else /*needs to split*/
|
||||
{
|
||||
assert(new_node);
|
||||
RTreeSplitNode (n, b, new_node);
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
static int RTreePickBranch (rect_t r, node_t n)
|
||||
{
|
||||
int i;
|
||||
double area;
|
||||
double inc_area;
|
||||
rect_t tmp;
|
||||
int best_i;
|
||||
double best_inc;
|
||||
double best_i_area;
|
||||
|
||||
best_i = 0;
|
||||
best_inc = DBL_MAX; /* double Max value */
|
||||
best_i_area = DBL_MAX;
|
||||
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (n->branch[i].child)
|
||||
{
|
||||
area = RectArea (n->branch[i].mbr);
|
||||
tmp = RectCombine (r, n->branch[i].mbr);
|
||||
inc_area = RectArea (tmp) - area;
|
||||
|
||||
if (inc_area < best_inc)
|
||||
{
|
||||
best_inc = inc_area;
|
||||
best_i = i;
|
||||
best_i_area = area;
|
||||
}
|
||||
else if (inc_area == best_inc && best_i_area > area)
|
||||
{
|
||||
best_inc = inc_area;
|
||||
best_i = i;
|
||||
best_i_area = area;
|
||||
}
|
||||
}
|
||||
else
|
||||
break;
|
||||
return best_i;
|
||||
}
|
||||
|
||||
static void RTreeSplitNode (node_t n, branch_t b, node_t *new_node)
|
||||
{
|
||||
partition_t p;
|
||||
int level;
|
||||
int i;
|
||||
|
||||
assert(n);
|
||||
assert(new_node);
|
||||
|
||||
p = PartitionNew();
|
||||
|
||||
for (i = 0; i < MAXCARD; i ++)
|
||||
PartitionPush(&p,n->branch[i]);
|
||||
PartitionPush(&p,b);
|
||||
|
||||
level = n->level;
|
||||
RTreeNodeInit(n);
|
||||
n->level = level;
|
||||
*new_node = RTreeNewNode();
|
||||
(*new_node)->level = level;
|
||||
|
||||
RTreePickSeeds(&p, n, *new_node);
|
||||
|
||||
while (p.n)
|
||||
if (n->count + p.n <= MINCARD)
|
||||
/* first group (n) needs all entries */
|
||||
RTreeNodeAddBranch(&(p.cover[0]), n, PartitionPop(&p));
|
||||
else if ((*new_node)->count + p.n <= MINCARD)
|
||||
/* second group (new_node) needs all entries */
|
||||
RTreeNodeAddBranch(&(p.cover[1]), *new_node, PartitionPop(&p));
|
||||
else
|
||||
RTreePickNext(&p, n, *new_node);
|
||||
}
|
||||
|
||||
static void RTreePickNext(partition_t *p, node_t n1, node_t n2)
|
||||
/* linear version */
|
||||
{
|
||||
branch_t b;
|
||||
double area[2], inc_area[2];
|
||||
rect_t tmp;
|
||||
|
||||
b = PartitionPop(p);
|
||||
|
||||
area[0] = RectArea (p->cover[0]);
|
||||
tmp = RectCombine (p->cover[0], b.mbr);
|
||||
inc_area[0] = RectArea (tmp) - area[0];
|
||||
|
||||
area[1] = RectArea (p->cover[1]);
|
||||
tmp = RectCombine (p->cover[1], b.mbr);
|
||||
inc_area[1] = RectArea (tmp) - area[1];
|
||||
|
||||
if (inc_area[0] < inc_area[1] ||
|
||||
(inc_area[0] == inc_area[1] && area[0] < area[1]))
|
||||
RTreeNodeAddBranch(&(p->cover[0]),n1,b);
|
||||
else
|
||||
RTreeNodeAddBranch(&(p->cover[1]),n2,b);
|
||||
}
|
||||
|
||||
static void RTreePickSeeds(partition_t *p, node_t n1, node_t n2)
|
||||
/* puts in index 0 of each node the resulting entry, forming the two
|
||||
groups
|
||||
This is the linear version
|
||||
*/
|
||||
{
|
||||
int dim,high, i;
|
||||
int highestLow[NUMDIMS], lowestHigh[NUMDIMS];
|
||||
double width[NUMDIMS];
|
||||
int seed0, seed1;
|
||||
double sep, best_sep;
|
||||
|
||||
assert(p->n == MAXCARD + 1);
|
||||
|
||||
for (dim = 0; dim < NUMDIMS; dim++)
|
||||
{
|
||||
high = dim + NUMDIMS;
|
||||
highestLow[dim] = lowestHigh[dim] = 0;
|
||||
for (i = 1; i < MAXCARD +1; i++)
|
||||
{
|
||||
if (p->buffer[i].mbr.coords[dim] >
|
||||
p->buffer[highestLow[dim]].mbr.coords[dim])
|
||||
highestLow[dim] = i;
|
||||
if (p->buffer[i].mbr.coords[high] <
|
||||
p->buffer[lowestHigh[dim]].mbr.coords[high])
|
||||
lowestHigh[dim] = i;
|
||||
}
|
||||
width[dim] = p->cover_all.coords[high] - p->cover_all.coords[dim];
|
||||
assert(width[dim] >= 0);
|
||||
}
|
||||
|
||||
seed0 = lowestHigh[0];
|
||||
seed1 = highestLow[0];
|
||||
best_sep = 0;
|
||||
for (dim = 0; dim < NUMDIMS; dim ++)
|
||||
{
|
||||
high = dim + NUMDIMS;
|
||||
|
||||
sep = (p->buffer[highestLow[dim]].mbr.coords[dim] -
|
||||
p->buffer[lowestHigh[dim]].mbr.coords[high]) / width[dim];
|
||||
if (sep > best_sep)
|
||||
{
|
||||
seed0 = lowestHigh[dim];
|
||||
seed1 = highestLow[dim];
|
||||
best_sep = sep;
|
||||
}
|
||||
}
|
||||
/* assert (seed0 != seed1); */
|
||||
if (seed0 > seed1)
|
||||
{
|
||||
RTreeNodeAddBranch(&(p->cover[0]),n1,PartitionGet(p,seed0));
|
||||
RTreeNodeAddBranch(&(p->cover[1]),n2,PartitionGet(p,seed1));
|
||||
}
|
||||
else if (seed0 < seed1)
|
||||
{
|
||||
RTreeNodeAddBranch(&(p->cover[0]),n1,PartitionGet(p,seed1));
|
||||
RTreeNodeAddBranch(&(p->cover[1]),n2,PartitionGet(p,seed0));
|
||||
}
|
||||
}
|
||||
|
||||
static void RTreeNodeAddBranch(rect_t *r, node_t n, branch_t b)
|
||||
{
|
||||
int i;
|
||||
|
||||
assert(n);
|
||||
assert(n->count < MAXCARD);
|
||||
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (n->branch[i].child == NULL)
|
||||
{
|
||||
n->branch[i] = b;
|
||||
n->count ++;
|
||||
break;
|
||||
}
|
||||
*r = RectCombine(*r,b.mbr);
|
||||
}
|
||||
|
||||
|
||||
void RTreePrint(node_t t)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* printf("rtree([_,_,_,_,_]).\n"); */
|
||||
printf("rtree(%p,%d,[",t,t->level);
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
{
|
||||
if (t->branch[i].child != NULL)
|
||||
{
|
||||
printf("(%p,",t->branch[i].child);
|
||||
RectPrint(t->branch[i].mbr);
|
||||
printf(")");
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("nil");
|
||||
}
|
||||
if (i < MAXCARD-1)
|
||||
printf(",");
|
||||
}
|
||||
printf("]).\n");
|
||||
|
||||
if (t->level != 0)
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (t->branch[i].child != NULL)
|
||||
RTreePrint((node_t) t->branch[i].child);
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Partition related
|
||||
*/
|
||||
|
||||
static partition_t PartitionNew (void)
|
||||
{
|
||||
partition_t p;
|
||||
memset((void *) &p,0, sizeof(p));
|
||||
p.cover[0] = p.cover[1] = p.cover_all = RectInit();
|
||||
return p;
|
||||
}
|
||||
|
||||
static void PartitionPush (partition_t *p, branch_t b)
|
||||
{
|
||||
assert(p->n < MAXCARD + 1);
|
||||
p->buffer[p->n] = b;
|
||||
p->n ++;
|
||||
p->cover_all = RectCombine(p->cover_all,b.mbr);
|
||||
}
|
||||
|
||||
static branch_t PartitionPop (partition_t *p)
|
||||
{
|
||||
assert(p->n > 0);
|
||||
p->n --;
|
||||
return p->buffer[p->n];
|
||||
}
|
||||
|
||||
static branch_t PartitionGet (partition_t *p, int n)
|
||||
{
|
||||
branch_t b;
|
||||
assert (p->n > n);
|
||||
b = p->buffer[n];
|
||||
p->buffer[n] = PartitionPop(p);
|
||||
return b;
|
||||
}
|
||||
|
||||
/*
|
||||
* Rect related
|
||||
*/
|
||||
|
||||
rect_t RectInit (void)
|
||||
{
|
||||
rect_t r = {{DBL_MAX, DBL_MAX, DBL_MIN, DBL_MIN}};
|
||||
return (r);
|
||||
}
|
||||
|
||||
static double RectArea (rect_t r)
|
||||
{
|
||||
int i;
|
||||
double area;
|
||||
|
||||
for (i = 0,area = 1; i < NUMDIMS; i++)
|
||||
area *= r.coords[i+NUMDIMS] - r.coords[i];
|
||||
|
||||
/* area = (r.coords[1] - r.coords[0]) * */
|
||||
/* (r.coords[3] - r.coords[2]); */
|
||||
|
||||
return area;
|
||||
}
|
||||
|
||||
static rect_t RectCombine (rect_t r, rect_t s)
|
||||
{
|
||||
int i;
|
||||
rect_t new_rect;
|
||||
|
||||
for (i = 0; i < NUMDIMS; i++)
|
||||
{
|
||||
new_rect.coords[i] = MIN(r.coords[i],s.coords[i]);
|
||||
new_rect.coords[i+NUMDIMS] = MAX(r.coords[i+NUMDIMS],s.coords[i+NUMDIMS]);
|
||||
}
|
||||
|
||||
return new_rect;
|
||||
}
|
||||
|
||||
static int RectOverlap (rect_t r, rect_t s)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUMDIMS; i++)
|
||||
if (r.coords[i] > s.coords[i + NUMDIMS] ||
|
||||
s.coords[i] > r.coords[i + NUMDIMS])
|
||||
return FALSE;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static rect_t RTreeNodeCover(node_t n)
|
||||
{
|
||||
int i;
|
||||
rect_t r = RectInit();
|
||||
|
||||
for (i = 0; i < MAXCARD; i++)
|
||||
if (n->branch[i].child)
|
||||
{
|
||||
r = RectCombine (r, n->branch[i].mbr);
|
||||
}
|
||||
else
|
||||
break;
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static void RectPrint (rect_t r)
|
||||
{
|
||||
int i;
|
||||
|
||||
printf("[");
|
||||
for (i = 0; i < 2*NUMDIMS; i++)
|
||||
{
|
||||
printf("%f",r.coords[i]);
|
||||
if ( i < 2*NUMDIMS - 1)
|
||||
printf(",");
|
||||
}
|
||||
printf("]");
|
||||
}
|
@ -1,63 +0,0 @@
|
||||
#ifndef _RTREE_
|
||||
#define _RTREE_
|
||||
|
||||
#ifndef FALSE
|
||||
#define FALSE 0
|
||||
#endif
|
||||
#ifndef TRUE
|
||||
#define TRUE !FALSE
|
||||
#endif
|
||||
|
||||
#define NUMDIMS 2 /* 2d */
|
||||
|
||||
struct Rect
|
||||
{
|
||||
double coords[2*NUMDIMS]; /* x1min, y1min, ... , x1max, y1max, ...*/
|
||||
};
|
||||
typedef struct Rect rect_t;
|
||||
|
||||
struct Branch
|
||||
{
|
||||
rect_t mbr;
|
||||
void * child; /*void * so user can store whatever he needs, in case
|
||||
of non-leaf ndes it stores the child-pointer*/
|
||||
};
|
||||
typedef struct Branch branch_t;
|
||||
|
||||
#define PGSIZE 196
|
||||
#define MAXCARD (int)((PGSIZE-(2*sizeof(int)))/ sizeof(struct Branch))
|
||||
#define MINCARD (MAXCARD / 2)
|
||||
|
||||
struct Node
|
||||
{
|
||||
int count;
|
||||
int level;
|
||||
branch_t branch[MAXCARD];
|
||||
};
|
||||
typedef struct Node * node_t;
|
||||
|
||||
typedef node_t rtree_t;
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
/* CallBack to search function */
|
||||
typedef int (*SearchHitCallback)(rect_t r, void *data, void *arg);
|
||||
|
||||
extern rtree_t RTreeNew (void);
|
||||
extern void RTreeInsert (rtree_t *, rect_t, void *);
|
||||
extern int RTreeSearch (rtree_t, rect_t, SearchHitCallback, void *);
|
||||
extern void RTreeDestroy (rtree_t);
|
||||
extern void RTreePrint(node_t);
|
||||
extern rect_t RectInit (void);
|
||||
|
||||
struct Partition
|
||||
{
|
||||
branch_t buffer[MAXCARD+1];
|
||||
int n;
|
||||
rect_t cover_all;
|
||||
rect_t cover[2];
|
||||
};
|
||||
typedef struct Partition partition_t;
|
||||
|
||||
#endif /* _RTREE_ */
|
@ -1,179 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include <YapInterface.h>
|
||||
|
||||
#include "Yap.h"
|
||||
|
||||
#include "rtree.h"
|
||||
#include "clause_list.h"
|
||||
#include "rtree_udi_i.h"
|
||||
#include "rtree_udi.h"
|
||||
|
||||
static int YAP_IsNumberTermToFloat (Term term, YAP_Float *n)
|
||||
{
|
||||
if (YAP_IsIntTerm (term) != FALSE)
|
||||
{
|
||||
if (n != NULL)
|
||||
*n = (YAP_Float) YAP_IntOfTerm (term);
|
||||
return (TRUE);
|
||||
}
|
||||
if (YAP_IsFloatTerm (term) != FALSE)
|
||||
{
|
||||
if (n != NULL)
|
||||
*n = YAP_FloatOfTerm (term);
|
||||
return (TRUE);
|
||||
}
|
||||
return (FALSE);
|
||||
}
|
||||
|
||||
static rect_t RectOfTerm (Term term)
|
||||
{
|
||||
YAP_Term tmp;
|
||||
rect_t rect;
|
||||
int i;
|
||||
|
||||
if (!YAP_IsPairTerm(term))
|
||||
return (RectInit());
|
||||
|
||||
for (i = 0; YAP_IsPairTerm(term) && i < 4; i++)
|
||||
{
|
||||
tmp = YAP_HeadOfTerm (term);
|
||||
if (!YAP_IsNumberTermToFloat(tmp,&(rect.coords[i])))
|
||||
return (RectInit());
|
||||
term = YAP_TailOfTerm (term);
|
||||
}
|
||||
|
||||
return (rect);
|
||||
}
|
||||
|
||||
control_t *RtreeUdiInit (Term spec,
|
||||
void * pred,
|
||||
int arity){
|
||||
control_t *control;
|
||||
YAP_Term arg;
|
||||
int i, c;
|
||||
/* YAP_Term mod; */
|
||||
|
||||
/* spec = Yap_StripModule(spec, &mod); */
|
||||
if (! YAP_IsApplTerm(spec))
|
||||
return (NULL);
|
||||
|
||||
control = (control_t *) malloc (sizeof(*control));
|
||||
assert(control);
|
||||
memset((void *) control,0, sizeof(*control));
|
||||
|
||||
c = 0;
|
||||
for (i = 1; i <= arity; i ++)
|
||||
{
|
||||
arg = YAP_ArgOfTerm(i,spec);
|
||||
if (YAP_IsAtomTerm(arg)
|
||||
&& strcmp("+",YAP_AtomName(YAP_AtomOfTerm(arg))) == 0)
|
||||
{
|
||||
|
||||
(*control)[c].pred = pred;
|
||||
(*control)[c++].arg = i;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/* for (i = 0; i < NARGS; i++)
|
||||
printf("%d,%p\t",(*control)[i].arg,(*control)[i].tree);
|
||||
printf("\n"); */
|
||||
|
||||
return control;
|
||||
}
|
||||
|
||||
control_t *RtreeUdiInsert (Term term,control_t *control,void *clausule)
|
||||
{
|
||||
int i;
|
||||
rect_t r;
|
||||
|
||||
assert(control);
|
||||
|
||||
for (i = 0; i < NARGS && (*control)[i].arg != 0 ; i++)
|
||||
{
|
||||
r = RectOfTerm(YAP_ArgOfTerm((*control)[i].arg,term));
|
||||
if (!(*control)[i].tree)
|
||||
(*control)[i].tree = RTreeNew();
|
||||
RTreeInsert(&(*control)[i].tree,r,clausule);
|
||||
}
|
||||
|
||||
/* printf("insert %p\n", clausule); */
|
||||
|
||||
return (control);
|
||||
}
|
||||
|
||||
static int callback(rect_t r, void *data, void *arg)
|
||||
{
|
||||
callback_m_t x;
|
||||
x = (callback_m_t) arg;
|
||||
return Yap_ClauseListExtend(x->cl,data,x->pred);
|
||||
}
|
||||
|
||||
/*ARGS ARE AVAILABLE*/
|
||||
void *RtreeUdiSearch (control_t *control)
|
||||
{
|
||||
rect_t r;
|
||||
int i;
|
||||
struct ClauseList clauselist;
|
||||
struct CallbackM cm;
|
||||
callback_m_t c;
|
||||
YAP_Term Constraints;
|
||||
|
||||
/*RTreePrint ((*control)[0].tree);*/
|
||||
|
||||
for (i = 0; i < NARGS && (*control)[i].arg != 0 ; i++) {
|
||||
YAP_Term t = YAP_A((*control)[i].arg);
|
||||
if (YAP_IsAttVar(t))
|
||||
{
|
||||
fprintf(stderr,"i=%ld\n",i);
|
||||
/*get the constraits rect*/
|
||||
Constraints = YAP_AttsOfVar(t);
|
||||
/* Yap_DebugPlWrite(Constraints); */
|
||||
r = RectOfTerm(YAP_ArgOfTerm(2,Constraints));
|
||||
|
||||
c = &cm;
|
||||
c->cl = Yap_ClauseListInit(&clauselist);
|
||||
c->pred = (*control)[i].pred;
|
||||
if (!c->cl)
|
||||
return NULL; /*? or fail*/
|
||||
RTreeSearch((*control)[i].tree, r, callback, c);
|
||||
Yap_ClauseListClose(c->cl);
|
||||
|
||||
if (Yap_ClauseListCount(c->cl) == 0)
|
||||
{
|
||||
Yap_ClauseListDestroy(c->cl);
|
||||
return Yap_FAILCODE();
|
||||
}
|
||||
|
||||
if (Yap_ClauseListCount(c->cl) == 1)
|
||||
{
|
||||
return Yap_ClauseListToClause(c->cl);
|
||||
}
|
||||
|
||||
return Yap_ClauseListCode(c->cl);
|
||||
}
|
||||
}
|
||||
return NULL; /*YAP FALLBACK*/
|
||||
}
|
||||
|
||||
int RtreeUdiDestroy(control_t *control)
|
||||
{
|
||||
int i;
|
||||
|
||||
assert(control);
|
||||
|
||||
for (i = 0; i < NARGS && (*control)[i].arg != 0; i++)
|
||||
{
|
||||
if ((*control)[i].tree)
|
||||
RTreeDestroy((*control)[i].tree);
|
||||
}
|
||||
|
||||
free(control);
|
||||
control = NULL;
|
||||
|
||||
return TRUE;
|
||||
}
|
@ -1,20 +0,0 @@
|
||||
#ifndef _RTREE_UDI_I_
|
||||
#define _RTREE_UDI_I_
|
||||
|
||||
#define NARGS 5
|
||||
struct Control
|
||||
{
|
||||
int arg;
|
||||
void *pred;
|
||||
rtree_t tree;
|
||||
};
|
||||
typedef struct Control control_t[NARGS];
|
||||
|
||||
struct CallbackM
|
||||
{
|
||||
clause_list_t cl;
|
||||
void * pred;
|
||||
};
|
||||
typedef struct CallbackM * callback_m_t;
|
||||
|
||||
#endif /* _RTREE_UDI_I_ */
|
@ -9,7 +9,7 @@
|
||||
**************************************************************************
|
||||
* *
|
||||
* File: udi.yap *
|
||||
* Last rev: 8/2/88 *
|
||||
* Last rev: 17/12/2012 *
|
||||
* mods: *
|
||||
* comments: support user defined indexing *
|
||||
* *
|
||||
@ -22,5 +22,4 @@
|
||||
******************/
|
||||
|
||||
udi(Pred) :-
|
||||
'$udi_init'(rtree, Pred).
|
||||
|
||||
'$udi_init'(Pred).
|
||||
|
Reference in New Issue
Block a user