f868298acf
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@2256 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
249 lines
6.2 KiB
Prolog
249 lines
6.2 KiB
Prolog
% File : dgraphs.yap
|
|
% Author : Vitor Santos Costa
|
|
% Updated: 2006
|
|
% Purpose: Directed Graph Processing Utilities.
|
|
|
|
:- module( wundgraphs,
|
|
[
|
|
wundgraph_add_edge/5,
|
|
wundgraph_add_edges/3,
|
|
wundgraph_del_edge/5,
|
|
wundgraph_del_edges/3,
|
|
wundgraph_del_vertex/3,
|
|
wundgraph_edges/2,
|
|
wundgraph_neighbors/3,
|
|
wundgraph_neighbours/3,
|
|
wdgraph_to_wundgraph/2,
|
|
wundgraph_to_undgraph/2,
|
|
wundgraph_min_tree/3,
|
|
wundgraph_max_tree/3]).
|
|
|
|
:- reexport( library(wdgraphs),
|
|
[
|
|
wdgraph_new/1 as wundgraph_new,
|
|
wdgraph_add_vertex/3 as wundgraph_add_vertex,
|
|
wdgraph_add_vertices/3 as wundgraph_add_vertices,
|
|
wdgraph_vertices/2 as wundgraph_vertices,
|
|
wdgraph_del_vertices/3 as wundgraph_del_vertices,
|
|
wdgraph_edge/4 as wundgraph_edge,
|
|
wdgraph_symmetric_closure/2 as wdgraph_to_wundgraph,
|
|
wdgraph_to_dgraph/2 as wundgraph_to_undgraph,
|
|
dgraph_to_wdgraph/2 as undgraph_to_wundgraph,
|
|
wdgraph_min_path/5 as wundgraph_min_path,
|
|
wdgraph_min_paths/3 as wundgraph_min_paths,
|
|
wdgraph_max_path/5 as wundgraph_max_path,
|
|
wdgraph_path/3 as wundgraph_path]).
|
|
|
|
:- use_module( library(wdgraphs),
|
|
[
|
|
wdgraph_add_edge/5,
|
|
wdgraph_add_edges/3,
|
|
wdgraph_del_edge/5,
|
|
wdgraph_del_edges/3,
|
|
wdgraph_del_vertex/3,
|
|
wdgraph_edges/2,
|
|
wdgraph_neighbors/3,
|
|
wdgraph_symmetric_closure/2
|
|
]).
|
|
|
|
:- use_module(library(rbtrees),
|
|
[
|
|
rb_new/1,
|
|
rb_delete/4,
|
|
rb_partial_map/4,
|
|
rb_visit/2,
|
|
rb_insert/4,
|
|
rb_lookup/3
|
|
]).
|
|
|
|
:- use_module(library(lists),
|
|
[
|
|
reverse/2
|
|
]).
|
|
|
|
wundgraph_add_edge(Vs0, V1, V2, K, Vs2) :-
|
|
wdgraphs:wdgraph_new_edge(V1,V2,K,Vs0,Vs1),
|
|
wdgraphs:wdgraph_new_edge(V2,V1,K,Vs1,Vs2).
|
|
|
|
wundgraph_add_edges(G0, Edges, GF) :-
|
|
dup_edges(Edges, DupEdges),
|
|
wdgraph_add_edges(G0, DupEdges, GF).
|
|
|
|
dup_edges([],[]).
|
|
dup_edges([E1-(E2-K)|Edges], [E1-(E2-K),E2-(E1-K)|DupEdges]) :-
|
|
dup_edges(Edges, DupEdges).
|
|
|
|
wundgraph_edges(Vs, Edges) :-
|
|
wdgraph_edges(Vs, DupEdges),
|
|
remove_dups(DupEdges,Edges).
|
|
|
|
remove_dups([],[]).
|
|
remove_dups([V1-(V2-K)|DupEdges],NEdges) :- V1 @< V2, !,
|
|
NEdges = [V1-(V2-K)|Edges],
|
|
remove_dups(DupEdges,Edges).
|
|
remove_dups([_|DupEdges],Edges) :-
|
|
remove_dups(DupEdges,Edges).
|
|
|
|
wundgraph_neighbours(V,Vertices,Children) :-
|
|
wdgraph_neighbours(V,Vertices,Children0),
|
|
(
|
|
del_me(Children0,V,Children)
|
|
->
|
|
true
|
|
;
|
|
Children = Children0
|
|
).
|
|
wundgraph_neighbors(V,Vertices,Children) :-
|
|
wdgraph_neighbors(V,Vertices,Children0),
|
|
(
|
|
del_me(Children0,V,Children)
|
|
->
|
|
true
|
|
;
|
|
Children = Children0
|
|
).
|
|
|
|
del_me([], _, []).
|
|
del_me([K-_|Children], K1, NewChildren) :-
|
|
( K == K1 ->
|
|
Children = NewChildren
|
|
;
|
|
K @< K1 ->
|
|
NewChildren = [K|ChildrenLeft],
|
|
del_me(Children, K1, ChildrenLeft)
|
|
;
|
|
NewChildren = [K|MoreChildren],
|
|
compact(Children, MoreChildren)
|
|
).
|
|
|
|
wundgraph_del_edge(Vs0,V1,V2,K,VsF) :-
|
|
wdgraph_del_edge(Vs0,V1,V2,K,Vs1),
|
|
wdgraph_del_edge(Vs1,V2,V1,K,VsF).
|
|
|
|
wundgraph_del_edges(G0, Edges, GF) :-
|
|
dup_edges(Edges,DupEdges),
|
|
wdgraph_del_edges(G0, DupEdges, GF).
|
|
|
|
wundgraph_del_vertex(Vs0, V, Vsf) :-
|
|
rb_delete(Vs0, V, BackEdges, Vsi),
|
|
del_and_compact(BackEdges,V,BackVertices),
|
|
rb_partial_map(Vsi, BackVertices, del_edge(V), Vsf).
|
|
|
|
del_and_compact([], _, []).
|
|
del_and_compact([K-_|Children], K1, NewChildren) :-
|
|
( K == K1 ->
|
|
compact(Children, NewChildren)
|
|
;
|
|
K @< K1 ->
|
|
NewChildren = [K|ChildrenLeft],
|
|
del_and_compact(Children, K1, ChildrenLeft)
|
|
;
|
|
NewChildren = [K|CompactChildren],
|
|
compact(Children, CompactChildren)
|
|
).
|
|
|
|
compact([], []).
|
|
compact([K-_|Children], [K|CompactChildren]) :-
|
|
compact(Children, CompactChildren).
|
|
|
|
|
|
del_edge(_, [], []).
|
|
del_edge(K1, [K-W|Children], NewChildren) :-
|
|
( K == K1 ->
|
|
Children = NewChildren
|
|
;
|
|
K @< K1 ->
|
|
NewChildren = [K-W|ChildrenLeft],
|
|
del_edge(K1, Children, ChildrenLeft)
|
|
;
|
|
NewChildren = [K-W|Children]
|
|
).
|
|
|
|
wundgraph_to_wdgraph(G, G).
|
|
|
|
|
|
% simplistic algorithm to build a minimal spanning tree.
|
|
% Just sort edges and then walk over each one.
|
|
|
|
wundgraph_min_tree(G, T, C) :-
|
|
rb_visit(G, Els0),
|
|
generate_min_tree(Els0, T, C).
|
|
|
|
generate_min_tree([], T, 0) :- !,
|
|
wundgraph_new(T).
|
|
generate_min_tree([El-_], T, 0) :- !,
|
|
wundgraph_new(T0),
|
|
wundgraph_add_vertex(T0, El, T).
|
|
generate_min_tree(Els0, T, C) :-
|
|
mk_list_of_edges(Els0, Edges),
|
|
keysort(Edges, SortedEdges),
|
|
rb_new(V0),
|
|
rb_new(T0),
|
|
add_sorted_edges(SortedEdges, V0, TreeEdges, 0, C),
|
|
wundgraph_add_edges(T0, TreeEdges, T).
|
|
|
|
wundgraph_max_tree(G, T, C) :-
|
|
rb_visit(G, Els0),
|
|
generate_max_tree(Els0, T, C).
|
|
|
|
generate_max_tree([], T, 0) :- !,
|
|
wundgraph_new(T).
|
|
generate_max_tree([El-_], T, 0) :- !,
|
|
wundgraph_new(T0),
|
|
wundgraph_add_vertex(T0, El, T).
|
|
generate_max_tree(Els0, T, C) :-
|
|
mk_list_of_edges(Els0, Edges),
|
|
keysort(Edges, SortedEdges),
|
|
reverse(SortedEdges, ReversedEdges),
|
|
rb_new(V0),
|
|
rb_new(T0),
|
|
add_sorted_edges(ReversedEdges, V0, TreeEdges, 0, C),
|
|
wundgraph_add_edges(T0, TreeEdges, T).
|
|
|
|
mk_list_of_edges([], []).
|
|
mk_list_of_edges([V-Els|Els0], Edges) :-
|
|
add_neighbs(Els, V, Edges, Edges0),
|
|
mk_list_of_edges(Els0, Edges0).
|
|
|
|
add_neighbs([], _, Edges, Edges).
|
|
add_neighbs([V-W|Els], V0, [W-(V0-V)|Edges], Edges0) :-
|
|
V0 @< V, !,
|
|
add_neighbs(Els, V0, Edges, Edges0).
|
|
add_neighbs([_|Els], V0, Edges, Edges0) :-
|
|
add_neighbs(Els, V0, Edges, Edges0).
|
|
|
|
|
|
add_sorted_edges([], _, [], C, C).
|
|
add_sorted_edges([W-(V0-V)|SortedEdges], T0, NewTreeEdges, C0, C) :-
|
|
( rb_lookup(V0, Component, T0) ->
|
|
( rb_lookup(V, Component1, T0) ->
|
|
( Component \== Component1 ->
|
|
/* edge that links two separate sub-trees (components) */
|
|
Component = Component1,
|
|
Ti = T0
|
|
;
|
|
/* same component, can't add edge */
|
|
fail
|
|
)
|
|
;
|
|
/* V is new */
|
|
rb_insert(T0, V, Component, Ti)
|
|
)
|
|
;
|
|
( rb_lookup(V, Component1, T0) ->
|
|
/* V0 is new */
|
|
rb_insert(T0, V0, Component1, Ti)
|
|
;
|
|
/* new edges, new tree */
|
|
rb_insert(T0, V0, NewComponent, T1),
|
|
rb_insert(T1, V, NewComponent, Ti)
|
|
)
|
|
),
|
|
!,
|
|
NewTreeEdges = [(V0-(V-W)),(V-(V0-W))|TreeEdges],
|
|
Ci is C0+W,
|
|
add_sorted_edges(SortedEdges, Ti, TreeEdges, Ci, C).
|
|
add_sorted_edges([_|SortedEdges], T0, NewTreeEdges, C0, C) :-
|
|
add_sorted_edges(SortedEdges, T0, NewTreeEdges, C0, C).
|
|
|