Merge branch 'master' of ssh://git.dcc.fc.up.pt/yap-6.3

This commit is contained in:
Vitor Santos Costa 2013-01-08 22:06:26 +00:00
commit 1043d037e9
20 changed files with 1741 additions and 997 deletions

5
.gitignore vendored
View File

@ -11,3 +11,8 @@
*.dylib
docs/yap.info*
.build
.cproject
.project
.settings
autom4te.cache

3
.gitmodules vendored
View File

@ -43,3 +43,6 @@
[submodule "packages/odbc"]
path = packages/odbc
url = git://yap.git.sourceforge.net/gitroot/yap/odbc
[submodule "packages/udi"]
path = packages/udi
url = https://github.com/davidvaz/yap-udi-indexers.git

448
C/udi.c
View File

@ -1,169 +1,361 @@
#include <stdio.h>
#include <assert.h>
#include "Yap.h"
#include "YapInterface.h"
#include "clause.h"
#include "udi.h"
#include "udi_private.h"
/* to keep an array with the registered udi indexers */
UT_icd udicb_icd = {sizeof(UdiControlBlock), NULL, NULL, NULL};
UT_array *indexing_structures;
#include "rtree_udi.h"
/* we can have this stactic because it is written once */
static struct udi_control_block RtreeCmd;
/******
All the info we need to enter user indexed code:
predicate
the user control block
functions used, in case we have different schema (maybe should part of previous)
right now, this is just a linked list....
******/
typedef struct udi_info
{
PredEntry *p;
void *cb;
UdiControlBlock functions;
struct udi_info *next;
} *UdiInfo;
/******
we now have one extra user indexed predicate. We assume these
are few, so we can do with a linked list.
******/
static int
add_udi_block(void *info, PredEntry *p, UdiControlBlock cmd)
{
UdiInfo blk = (UdiInfo)Yap_AllocCodeSpace(sizeof(struct udi_info));
if (!blk)
return FALSE;
blk->next = UdiControlBlocks;
UdiControlBlocks = blk;
blk->p = p;
blk->functions = cmd;
blk->cb = info;
return TRUE;
/*
* Register a new user indexer
*/
void
Yap_UdiRegister(UdiControlBlock cb){
/*TODO: check structure integrity and duplicates */
utarray_push_back(indexing_structures, &cb);
}
/******
new user indexed predicate;
the type right now is just rtrees, but in the future we'll have more.
the second argument is the term.
******/
static Int
/*
* New user indexed predicate:
* the first argument is the term.
*/
static YAP_Int
p_new_udi( USES_REGS1 )
{
Term spec = Deref(ARG2), udi_type = Deref(ARG1);
PredEntry *p;
UdiControlBlock cmd;
Atom udi_t;
void *info;
Term spec = Deref(ARG1);
PredEntry *p;
UdiInfo blk;
int info;
/* fprintf(stderr,"new pred babe\n");*/
/* get the predicate from the spec, copied from cdmgr.c */
if (IsVarTerm(spec)) {
Yap_Error(INSTANTIATION_ERROR,spec,"new user index/1");
return FALSE;
Yap_Error(INSTANTIATION_ERROR,spec,"new user index/1");
return FALSE;
} else if (!IsApplTerm(spec)) {
Yap_Error(TYPE_ERROR_COMPOUND,spec,"new user index/1");
return FALSE;
Yap_Error(TYPE_ERROR_COMPOUND,spec,"new user index/1");
return FALSE;
} else {
Functor fun = FunctorOfTerm(spec);
Term tmod = CurrentModule;
Functor fun = FunctorOfTerm(spec);
Term tmod = CurrentModule;
while (fun == FunctorModule) {
tmod = ArgOfTerm(1,spec);
if (IsVarTerm(tmod) ) {
Yap_Error(INSTANTIATION_ERROR, spec, "new user index/1");
return FALSE;
}
if (!IsAtomTerm(tmod) ) {
Yap_Error(TYPE_ERROR_ATOM, spec, "new user index/1");
return FALSE;
}
spec = ArgOfTerm(2, spec);
fun = FunctorOfTerm(spec);
}
p = RepPredProp(PredPropByFunc(fun, tmod));
while (fun == FunctorModule) {
tmod = ArgOfTerm(1,spec);
if (IsVarTerm(tmod) ) {
Yap_Error(INSTANTIATION_ERROR, spec, "new user index/1");
return FALSE;
}
if (!IsAtomTerm(tmod) ) {
Yap_Error(TYPE_ERROR_ATOM, spec, "new user index/1");
return FALSE;
}
spec = ArgOfTerm(2, spec);
fun = FunctorOfTerm(spec);
}
p = RepPredProp(PredPropByFunc(fun, tmod));
}
if (!p)
return FALSE;
return FALSE;
/* boring, boring, boring! */
if ((p->PredFlags & (DynamicPredFlag|LogUpdatePredFlag|UserCPredFlag|CArgsPredFlag|NumberDBPredFlag|AtomDBPredFlag|TestPredFlag|AsmPredFlag|CPredFlag|BinaryPredFlag)) ||
(p->ModuleOfPred == PROLOG_MODULE)) {
Yap_Error(PERMISSION_ERROR_MODIFY_STATIC_PROCEDURE, spec, "udi/2");
return FALSE;
if ((p->PredFlags
& (DynamicPredFlag|LogUpdatePredFlag|UserCPredFlag|CArgsPredFlag|NumberDBPredFlag|AtomDBPredFlag|TestPredFlag|AsmPredFlag|CPredFlag|BinaryPredFlag))
|| (p->ModuleOfPred == PROLOG_MODULE)) {
Yap_Error(PERMISSION_ERROR_MODIFY_STATIC_PROCEDURE, spec, "udi/2");
return FALSE;
}
if (p->PredFlags & (DynamicPredFlag|LogUpdatePredFlag|TabledPredFlag)) {
Yap_Error(PERMISSION_ERROR_ACCESS_PRIVATE_PROCEDURE, spec, "udi/2");
return FALSE;
}
/* just make sure we're looking at the right user type! */
if (IsVarTerm(udi_type)) {
Yap_Error(INSTANTIATION_ERROR,spec,"new user index/1");
return FALSE;
} else if (!IsAtomTerm(udi_type)) {
Yap_Error(TYPE_ERROR_ATOM,spec,"new user index/1");
return FALSE;
}
udi_t = AtomOfTerm(udi_type);
if (udi_t == AtomRTree) {
cmd = &RtreeCmd;
} else {
Yap_Error(TYPE_ERROR_ATOM,spec,"new user index/1");
return FALSE;
Yap_Error(PERMISSION_ERROR_ACCESS_PRIVATE_PROCEDURE, spec, "udi/2");
return FALSE;
}
/* TODO: remove AtomRTree from atom list */
/* this is the real work */
info = cmd->init(spec, (void *)p, p->ArityOfPE);
if (!info)
return FALSE;
/* add to table */
if (!add_udi_block(info, p, cmd)) {
Yap_Error(OUT_OF_HEAP_ERROR, spec, "new user index/1");
return FALSE;
blk = (UdiInfo) Yap_AllocCodeSpace(sizeof(struct udi_info));
memset((void *) blk,0, sizeof(struct udi_info));
if (!blk) {
Yap_Error(OUT_OF_HEAP_ERROR, spec, "new user index/1");
return FALSE;
}
/*Init UdiInfo */
utarray_new(blk->args, &arg_icd);
utarray_new(blk->clauselist, &cl_icd);
blk->p = p;
/*Now Init args list*/
info = p_udi_args_init(spec, p->ArityOfPE, blk);
if (!info)
{
utarray_free(blk->args);
utarray_free(blk->clauselist);
Yap_FreeCodeSpace((char *) blk);
return FALSE;
}
/*Push into the hash*/
HASH_ADD_UdiInfo(UdiControlBlocks, p, blk);
p->PredFlags |= UDIPredFlag;
return TRUE;
}
/* just pass info to user, called from cdmgr.c */
/*
* Here we initialize the arguments indexing
*/
YAP_Int
p_udi_args_init(Term spec, int arity, UdiInfo blk)
{
int i;
Term arg;
Atom idxtype;
UdiControlBlock *cb;
struct udi_p_args p_arg;
for (i = 1; i <= arity; i++) {
arg = ArgOfTerm(i,spec);
if (IsAtomTerm(arg)) {
idxtype = AtomOfTerm(arg);
if (idxtype == AtomMinus) //skip this argument
continue;
p_arg.control = NULL;
cb = NULL;
while ((cb = (UdiControlBlock *) utarray_next(indexing_structures, cb))) {
if (idxtype == (*cb)->decl){
p_arg.arg = i;
p_arg.control = *cb;
p_arg.idxstr = (*cb)->init(spec, i, arity);
utarray_push_back(blk->args, &p_arg);
}
}
if (p_arg.control == NULL){ /* not "-" and not found */
fprintf(stderr, "Invalid Spec (%s)\n", AtomName(idxtype));
return FALSE;
}
}
}
return TRUE;
}
/*
* From now on this is called in several places of yap
* when the predicate has the UDIPredFlag
* and is what actually triggers the insert/search/abolish of indexing structures
*/
/*
* Init Yap udi interface
*/
void
Yap_udi_init(void)
{
UdiControlBlocks = NULL;
/*init indexing structures array*/
utarray_new(indexing_structures, &udicb_icd);
Yap_InitCPred("$udi_init", 1, p_new_udi, 0);
/* TODO: decide if udi.yap should be loaded automaticaly in init.yap */
}
/* called from cdmgr.c
*
* for each assert of a udipredicate
* to pass info to user structure
*/
int
Yap_new_udi_clause(PredEntry *p, yamop *cl, Term t)
{
struct udi_info *info = UdiControlBlocks;
while (info->p != p && info)
info = info->next;
if (!info)
return FALSE;
info->cb = info->functions->insert(t, info->cb, (void *)cl);
return TRUE;
int i;
UdiPArg parg;
UdiInfo info;
YAP_Int index;
/* try to find our structure */
HASH_FIND_UdiInfo(UdiControlBlocks,p,info);
if (!info)
return FALSE;
/* insert into clauselist */
utarray_push_back(info->clauselist, &cl);
for (i = 0; i < utarray_len(info->args) ; i++) {
parg = (UdiPArg) utarray_eltptr(info->args,i);
index = (YAP_Int) utarray_len(info->clauselist);
parg->idxstr = parg->control->insert(parg->idxstr, t,
parg->arg,
(void *) index);
}
return TRUE;
}
/* index, called from absmi.c */
/* index, called from absmi.c
*
* Returns:
* NULL (yap fallback) No usable indexing available
*
* Yap_FAILCODE() (fail) No result found
* Yap_CauseListToClause(cl) 1 solution found
* Yap_ClauseListCode(cl) 2+ solutions found
*/
yamop *
Yap_udi_search(PredEntry *p)
{
struct udi_info *info = UdiControlBlocks;
while (info->p != p && info)
info = info->next;
if (!info)
return NULL;
return info->functions->search(info->cb);
int r;
struct ClauseList clauselist;
UdiPArg parg;
UdiInfo info;
/* find our structure*/
HASH_FIND_UdiInfo(UdiControlBlocks,p,info);
if (!info || utarray_len(info->args) == 0)
return NULL;
if (utarray_len(info->args) == 1){ //simple case no intersection needed
struct si_callback_h c;
c.cl = Yap_ClauseListInit(&clauselist);
c.clauselist = info->clauselist;
c.pred = info->p;
if (!c.cl)
return NULL;
parg = (UdiPArg) utarray_eltptr(info->args,0);
r = parg->control->search(parg->idxstr, parg->arg, si_callback, (void *) &c);
Yap_ClauseListClose(c.cl);
if (r == -1) {
Yap_ClauseListDestroy(c.cl);
return NULL;
}
if (Yap_ClauseListCount(c.cl) == 0) {
Yap_ClauseListDestroy(c.cl);
return Yap_FAILCODE();
}
} else {//intersection needed using Judy1
#ifdef USE_JUDY
/*TODO: do more tests to this algorithm*/
int i;
Pvoid_t tmp = (Pvoid_t) NULL;
Pvoid_t result = (Pvoid_t) NULL;
Word_t count = 0L;
Word_t idx_r = 0L;
Word_t idx_tmp = 0L;
int rc = 0;
yamop **x;
/*
* I will start with the simplest approach
* for each index create a set and intersect it with the
* next
*
* In the future it could pay to sort according to index type
* to improve intersection part
*/
for (i = 0; i < utarray_len(info->args) ; i++) {
parg = (UdiPArg) utarray_eltptr(info->args,i);
r = parg->control->search(parg->idxstr, parg->arg, j1_callback, &tmp);
if (r == -1) /*this arg does not prune search*/
continue;
rc ++;
J1C(count, result, 0, -1);
if (r == 0) /* this arg gave 0 results -> FAIL*/
{
if (count > 0) // clear previous result if they exists
J1FA(count, result);
return Yap_FAILCODE();
}
if (count == 0) // first result_set
{
result = tmp;
tmp = (Pvoid_t) NULL;
}
else /*intersection*/
{
idx_tmp = 0L;
idx_r = 0L;
J1F(count, result, idx_r); //succeeds one time at least
assert(count > 0);
J1F(count, tmp, idx_tmp); //succeeds one time at least
assert(count > 0);
while (count)
{
while (idx_r < idx_tmp)
{
J1U(count, result, idx_r); //does not belong
J1N(count, result, idx_r); //next
if (! count) break; //end result set
}
if(idx_r == idx_tmp)
{
J1N(count, result, idx_r); //next
if (! count) break; //end result set
J1N(count, tmp, idx_tmp); //next tmp
//if (! count) break; //end tmp set will break while
}
else // (idx_r > idx_tmp)
{
idx_tmp = idx_r; // fast forward
J1F(count, tmp, idx_tmp); // first starting in idx_r
//if (! count) break; //end tmp set will break while
}
}
J1F(count, result, idx_r); // first starting in idx_r
//clear up the rest
while (idx_r > idx_tmp && count) //result has more setted values
{
J1U(count, result, idx_r); //does not belong
J1N(count, result, idx_r); //next
}
J1FA(count, tmp); //free tmp
}
}
if (rc == 0) /*no search performed*/
return NULL;
J1C(count, result, 0, -1);
if (count == 0) { /*result set empty -> FAIL */
J1FA(count, result);
return Yap_FAILCODE();
}
/*convert Juddy1 to clauselist*/
Yap_ClauseListInit(&clauselist);
idx_r = 0L;
J1F(count, result, idx_r);
while (count)
{
x = (yamop **) utarray_eltptr(info->clauselist, idx_r - 1);
Yap_ClauseListExtend(
&clauselist,
*x,
info->p);
J1N(count, result, idx_r);
}
J1FA(count,result);
fprintf(stderr,"J1 used space %d bytes for %d clausules\n",
count, Yap_ClauseListCount(&clauselist));
Yap_ClauseListClose(&clauselist);
#else
fprintf(stderr,"Without libJudy only one argument indexed is allowed."
"Falling back to Yap Indexing\n");
return NULL; //NO Judy Available
#endif
}
if (Yap_ClauseListCount(&clauselist) == 1)
return Yap_ClauseListToClause(&clauselist);
return Yap_ClauseListCode(&clauselist);
}
/* index, called from absmi.c */
void
Yap_udi_abolish(PredEntry *p)
{
/* tell the predicate destroy */
/* tell the predicate destroy */
}
void
Yap_udi_init(void)
{
UdiControlBlocks = NULL;
/* to be filled in by David */
RtreeCmd.init = RtreeUdiInit;
RtreeCmd.insert = RtreeUdiInsert;
RtreeCmd.search = RtreeUdiSearch;
RtreeCmd.destroy = RtreeUdiDestroy;
Yap_InitCPred("$udi_init", 2, p_new_udi, 0);
}

View File

@ -368,8 +368,9 @@ Term STD_PROTO(Yap_LUInstance,(LogUpdClause *, UInt));
/* udi.c */
void STD_PROTO(Yap_udi_init,(void));
yamop *STD_PROTO(Yap_udi_search,(PredEntry *));
int STD_PROTO(Yap_new_udi_clause,(PredEntry *, yamop *, Term));
yamop *STD_PROTO(Yap_udi_search,(PredEntry *));
void STD_PROTO(Yap_udi_abolish,(PredEntry *p));
#ifdef DEBUG
void STD_PROTO(Yap_bug_location,(yamop *));

74
H/udi_private.h Normal file
View File

@ -0,0 +1,74 @@
#include "config.h"
#include "udi.h"
#include "utarray.h"
#include "uthash.h"
/* Argument Indexing */
struct udi_p_args {
int arg; //indexed arg
void *idxstr; //user indexing structure
UdiControlBlock control; //user indexing structure functions
};
typedef struct udi_p_args *UdiPArg;
UT_icd arg_icd = {sizeof(struct udi_p_args), NULL, NULL, NULL };
/* clauselist */
UT_icd cl_icd = {sizeof(yamop *), NULL, NULL, NULL };
/*
* All the info we need to enter user indexed code
* stored in a uthash
*/
struct udi_info
{
PredEntry *p; //predicate (need to identify asserts)
UT_array *clauselist; //clause list used on returns
UT_array *args; //indexed args
UT_hash_handle hh; //uthash handle
};
typedef struct udi_info *UdiInfo;
/* to ease code for a UdiInfo hash table*/
#define HASH_FIND_UdiInfo(head,find,out) \
HASH_FIND(hh,head,find,sizeof(PredEntry *),out)
#define HASH_ADD_UdiInfo(head,p,add) \
HASH_ADD_KEYPTR(hh,head,p,sizeof(PredEntry *),add)
/* used during init */
static YAP_Int p_new_udi( USES_REGS1 );
static YAP_Int p_udi_args_init(Term spec, int arity, UdiInfo blk);
/*
* Indexing Search and intersection Helpers
*/
/* single indexing helpers (no intersection needed just create clauselist) */
#include "clause_list.h"
struct si_callback_h
{
clause_list_t cl;
UT_array *clauselist;
void * pred;
};
typedef struct si_callback_h * si_callback_h_t;
static inline int si_callback(void *key, void *data, void *arg)
{
si_callback_h_t c = (si_callback_h_t) arg;
yamop **cl = (yamop **) utarray_eltptr(c->clauselist, ((YAP_Int) data) - 1);
return Yap_ClauseListExtend(c->cl, *cl, c->pred);
}
#ifdef USE_JUDY
#include <Judy.h>
/* Judy1 integer sparse set intersection */
static inline int j1_callback(void *key, void *data, void *arg)
{
int r;
Pvoid_t *array = (Pvoid_t *) arg;
J1S(r, *array, (int) data);
if (r == JERR)
return FALSE;
return TRUE;
}
#endif

233
H/utarray.h Normal file
View File

@ -0,0 +1,233 @@
/*
Copyright (c) 2008-2013, Troy D. Hanson http://uthash.sourceforge.net
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* a dynamic array implementation using macros
* see http://uthash.sourceforge.net/utarray
*/
#ifndef UTARRAY_H
#define UTARRAY_H
#define UTARRAY_VERSION 1.9.7
#ifdef __GNUC__
#define _UNUSED_ __attribute__ ((__unused__))
#else
#define _UNUSED_
#endif
#include <stddef.h> /* size_t */
#include <string.h> /* memset, etc */
#include <stdlib.h> /* exit */
#define oom() exit(-1)
typedef void (ctor_f)(void *dst, const void *src);
typedef void (dtor_f)(void *elt);
typedef void (init_f)(void *elt);
typedef struct {
size_t sz;
init_f *init;
ctor_f *copy;
dtor_f *dtor;
} UT_icd;
typedef struct {
unsigned i,n;/* i: index of next available slot, n: num slots */
UT_icd icd; /* initializer, copy and destructor functions */
char *d; /* n slots of size icd->sz*/
} UT_array;
#define utarray_init(a,_icd) do { \
memset(a,0,sizeof(UT_array)); \
(a)->icd=*_icd; \
} while(0)
#define utarray_done(a) do { \
if ((a)->n) { \
if ((a)->icd.dtor) { \
size_t _ut_i; \
for(_ut_i=0; _ut_i < (a)->i; _ut_i++) { \
(a)->icd.dtor(utarray_eltptr(a,_ut_i)); \
} \
} \
free((a)->d); \
} \
(a)->n=0; \
} while(0)
#define utarray_new(a,_icd) do { \
a=(UT_array*)malloc(sizeof(UT_array)); \
utarray_init(a,_icd); \
} while(0)
#define utarray_free(a) do { \
utarray_done(a); \
free(a); \
} while(0)
#define utarray_reserve(a,by) do { \
if (((a)->i+by) > ((a)->n)) { \
while(((a)->i+by) > ((a)->n)) { (a)->n = ((a)->n ? (2*(a)->n) : 8); } \
if ( ((a)->d=(char*)realloc((a)->d, (a)->n*(a)->icd.sz)) == NULL) oom(); \
} \
} while(0)
#define utarray_push_back(a,p) do { \
utarray_reserve(a,1); \
if ((a)->icd.copy) { (a)->icd.copy( _utarray_eltptr(a,(a)->i++), p); } \
else { memcpy(_utarray_eltptr(a,(a)->i++), p, (a)->icd.sz); }; \
} while(0)
#define utarray_pop_back(a) do { \
if ((a)->icd.dtor) { (a)->icd.dtor( _utarray_eltptr(a,--((a)->i))); } \
else { (a)->i--; } \
} while(0)
#define utarray_extend_back(a) do { \
utarray_reserve(a,1); \
if ((a)->icd.init) { (a)->icd.init(_utarray_eltptr(a,(a)->i)); } \
else { memset(_utarray_eltptr(a,(a)->i),0,(a)->icd.sz); } \
(a)->i++; \
} while(0)
#define utarray_len(a) ((a)->i)
#define utarray_eltptr(a,j) (((j) < (a)->i) ? _utarray_eltptr(a,j) : NULL)
#define _utarray_eltptr(a,j) ((char*)((a)->d + ((a)->icd.sz*(j) )))
#define utarray_insert(a,p,j) do { \
utarray_reserve(a,1); \
if (j > (a)->i) break; \
if ((j) < (a)->i) { \
memmove( _utarray_eltptr(a,(j)+1), _utarray_eltptr(a,j), \
((a)->i - (j))*((a)->icd.sz)); \
} \
if ((a)->icd.copy) { (a)->icd.copy( _utarray_eltptr(a,j), p); } \
else { memcpy(_utarray_eltptr(a,j), p, (a)->icd.sz); }; \
(a)->i++; \
} while(0)
#define utarray_inserta(a,w,j) do { \
if (utarray_len(w) == 0) break; \
if (j > (a)->i) break; \
utarray_reserve(a,utarray_len(w)); \
if ((j) < (a)->i) { \
memmove(_utarray_eltptr(a,(j)+utarray_len(w)), \
_utarray_eltptr(a,j), \
((a)->i - (j))*((a)->icd.sz)); \
} \
if ((a)->icd.copy) { \
size_t _ut_i; \
for(_ut_i=0;_ut_i<(w)->i;_ut_i++) { \
(a)->icd.copy(_utarray_eltptr(a,j+_ut_i), _utarray_eltptr(w,_ut_i)); \
} \
} else { \
memcpy(_utarray_eltptr(a,j), _utarray_eltptr(w,0), \
utarray_len(w)*((a)->icd.sz)); \
} \
(a)->i += utarray_len(w); \
} while(0)
#define utarray_resize(dst,num) do { \
size_t _ut_i; \
if (dst->i > (size_t)(num)) { \
if ((dst)->icd.dtor) { \
for(_ut_i=num; _ut_i < dst->i; _ut_i++) { \
(dst)->icd.dtor(utarray_eltptr(dst,_ut_i)); \
} \
} \
} else if (dst->i < (size_t)(num)) { \
utarray_reserve(dst,num-dst->i); \
if ((dst)->icd.init) { \
for(_ut_i=dst->i; _ut_i < num; _ut_i++) { \
(dst)->icd.init(utarray_eltptr(dst,_ut_i)); \
} \
} else { \
memset(_utarray_eltptr(dst,dst->i),0,(dst)->icd.sz*(num-dst->i)); \
} \
} \
dst->i = num; \
} while(0)
#define utarray_concat(dst,src) do { \
utarray_inserta((dst),(src),utarray_len(dst)); \
} while(0)
#define utarray_erase(a,pos,len) do { \
if ((a)->icd.dtor) { \
size_t _ut_i; \
for(_ut_i=0; _ut_i < len; _ut_i++) { \
(a)->icd.dtor(utarray_eltptr((a),pos+_ut_i)); \
} \
} \
if ((a)->i > (pos+len)) { \
memmove( _utarray_eltptr((a),pos), _utarray_eltptr((a),pos+len), \
(((a)->i)-(pos+len))*((a)->icd.sz)); \
} \
(a)->i -= (len); \
} while(0)
#define utarray_renew(a,u) do { \
if (a) utarray_clear(a); \
else utarray_new((a),(u)); \
} while(0)
#define utarray_clear(a) do { \
if ((a)->i > 0) { \
if ((a)->icd.dtor) { \
size_t _ut_i; \
for(_ut_i=0; _ut_i < (a)->i; _ut_i++) { \
(a)->icd.dtor(utarray_eltptr(a,_ut_i)); \
} \
} \
(a)->i = 0; \
} \
} while(0)
#define utarray_sort(a,cmp) do { \
qsort((a)->d, (a)->i, (a)->icd.sz, cmp); \
} while(0)
#define utarray_find(a,v,cmp) bsearch((v),(a)->d,(a)->i,(a)->icd.sz,cmp)
#define utarray_front(a) (((a)->i) ? (_utarray_eltptr(a,0)) : NULL)
#define utarray_next(a,e) (((e)==NULL) ? utarray_front(a) : ((((a)->i) > (utarray_eltidx(a,e)+1)) ? _utarray_eltptr(a,utarray_eltidx(a,e)+1) : NULL))
#define utarray_prev(a,e) (((e)==NULL) ? utarray_back(a) : ((utarray_eltidx(a,e) > 0) ? _utarray_eltptr(a,utarray_eltidx(a,e)-1) : NULL))
#define utarray_back(a) (((a)->i) ? (_utarray_eltptr(a,(a)->i-1)) : NULL)
#define utarray_eltidx(a,e) (((char*)(e) >= (char*)((a)->d)) ? (((char*)(e) - (char*)((a)->d))/(a)->icd.sz) : -1)
/* last we pre-define a few icd for common utarrays of ints and strings */
static void utarray_str_cpy(void *dst, const void *src) {
char **_src = (char**)src, **_dst = (char**)dst;
*_dst = (*_src == NULL) ? NULL : strdup(*_src);
}
static void utarray_str_dtor(void *elt) {
char **eltc = (char**)elt;
if (*eltc) free(*eltc);
}
static const UT_icd ut_str_icd _UNUSED_ = {sizeof(char*),NULL,utarray_str_cpy,utarray_str_dtor};
static const UT_icd ut_int_icd _UNUSED_ = {sizeof(int),NULL,NULL,NULL};
static const UT_icd ut_ptr_icd _UNUSED_ = {sizeof(void*),NULL,NULL,NULL};
#endif /* UTARRAY_H */

917
H/uthash.h Normal file
View File

@ -0,0 +1,917 @@
/*
Copyright (c) 2003-2013, Troy D. Hanson http://uthash.sourceforge.net
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef UTHASH_H
#define UTHASH_H
#include <string.h> /* memcmp,strlen */
#include <stddef.h> /* ptrdiff_t */
#include <stdlib.h> /* exit() */
/* These macros use decltype or the earlier __typeof GNU extension.
As decltype is only available in newer compilers (VS2010 or gcc 4.3+
when compiling c++ source) this code uses whatever method is needed
or, for VS2008 where neither is available, uses casting workarounds. */
#ifdef _MSC_VER /* MS compiler */
#if _MSC_VER >= 1600 && defined(__cplusplus) /* VS2010 or newer in C++ mode */
#define DECLTYPE(x) (decltype(x))
#else /* VS2008 or older (or VS2010 in C mode) */
#define NO_DECLTYPE
#define DECLTYPE(x)
#endif
#else /* GNU, Sun and other compilers */
#define DECLTYPE(x) (__typeof(x))
#endif
#ifdef NO_DECLTYPE
#define DECLTYPE_ASSIGN(dst,src) \
do { \
char **_da_dst = (char**)(&(dst)); \
*_da_dst = (char*)(src); \
} while(0)
#else
#define DECLTYPE_ASSIGN(dst,src) \
do { \
(dst) = DECLTYPE(dst)(src); \
} while(0)
#endif
/* a number of the hash function use uint32_t which isn't defined on win32 */
#ifdef _MSC_VER
typedef unsigned int uint32_t;
typedef unsigned char uint8_t;
#else
#include <inttypes.h> /* uint32_t */
#endif
#define UTHASH_VERSION 1.9.7
#ifndef uthash_fatal
#define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */
#endif
#ifndef uthash_malloc
#define uthash_malloc(sz) malloc(sz) /* malloc fcn */
#endif
#ifndef uthash_free
#define uthash_free(ptr,sz) free(ptr) /* free fcn */
#endif
#ifndef uthash_noexpand_fyi
#define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */
#endif
#ifndef uthash_expand_fyi
#define uthash_expand_fyi(tbl) /* can be defined to log expands */
#endif
/* initial number of buckets */
#define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */
#define HASH_INITIAL_NUM_BUCKETS_LOG2 5 /* lg2 of initial number of buckets */
#define HASH_BKT_CAPACITY_THRESH 10 /* expand when bucket count reaches */
/* calculate the element whose hash handle address is hhe */
#define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho)))
#define HASH_FIND(hh,head,keyptr,keylen,out) \
do { \
unsigned _hf_bkt,_hf_hashv; \
out=NULL; \
if (head) { \
HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \
if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \
HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \
keyptr,keylen,out); \
} \
} \
} while (0)
#ifdef HASH_BLOOM
#define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM)
#define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0)
#define HASH_BLOOM_MAKE(tbl) \
do { \
(tbl)->bloom_nbits = HASH_BLOOM; \
(tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \
if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \
memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \
(tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \
} while (0)
#define HASH_BLOOM_FREE(tbl) \
do { \
uthash_free((tbl)->bloom_bv, HASH_BLOOM_BYTELEN); \
} while (0)
#define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8)))
#define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8)))
#define HASH_BLOOM_ADD(tbl,hashv) \
HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
#define HASH_BLOOM_TEST(tbl,hashv) \
HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
#else
#define HASH_BLOOM_MAKE(tbl)
#define HASH_BLOOM_FREE(tbl)
#define HASH_BLOOM_ADD(tbl,hashv)
#define HASH_BLOOM_TEST(tbl,hashv) (1)
#endif
#define HASH_MAKE_TABLE(hh,head) \
do { \
(head)->hh.tbl = (UT_hash_table*)uthash_malloc( \
sizeof(UT_hash_table)); \
if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \
memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \
(head)->hh.tbl->tail = &((head)->hh); \
(head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \
(head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \
(head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \
(head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \
memset((head)->hh.tbl->buckets, 0, \
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
HASH_BLOOM_MAKE((head)->hh.tbl); \
(head)->hh.tbl->signature = HASH_SIGNATURE; \
} while(0)
#define HASH_ADD(hh,head,fieldname,keylen_in,add) \
HASH_ADD_KEYPTR(hh,head,&((add)->fieldname),keylen_in,add)
#define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \
do { \
unsigned _ha_bkt; \
(add)->hh.next = NULL; \
(add)->hh.key = (char*)keyptr; \
(add)->hh.keylen = (unsigned)keylen_in; \
if (!(head)) { \
head = (add); \
(head)->hh.prev = NULL; \
HASH_MAKE_TABLE(hh,head); \
} else { \
(head)->hh.tbl->tail->next = (add); \
(add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \
(head)->hh.tbl->tail = &((add)->hh); \
} \
(head)->hh.tbl->num_items++; \
(add)->hh.tbl = (head)->hh.tbl; \
HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \
(add)->hh.hashv, _ha_bkt); \
HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \
HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \
HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \
HASH_FSCK(hh,head); \
} while(0)
#define HASH_TO_BKT( hashv, num_bkts, bkt ) \
do { \
bkt = ((hashv) & ((num_bkts) - 1)); \
} while(0)
/* delete "delptr" from the hash table.
* "the usual" patch-up process for the app-order doubly-linked-list.
* The use of _hd_hh_del below deserves special explanation.
* These used to be expressed using (delptr) but that led to a bug
* if someone used the same symbol for the head and deletee, like
* HASH_DELETE(hh,users,users);
* We want that to work, but by changing the head (users) below
* we were forfeiting our ability to further refer to the deletee (users)
* in the patch-up process. Solution: use scratch space to
* copy the deletee pointer, then the latter references are via that
* scratch pointer rather than through the repointed (users) symbol.
*/
#define HASH_DELETE(hh,head,delptr) \
do { \
unsigned _hd_bkt; \
struct UT_hash_handle *_hd_hh_del; \
if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \
uthash_free((head)->hh.tbl->buckets, \
(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \
HASH_BLOOM_FREE((head)->hh.tbl); \
uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \
head = NULL; \
} else { \
_hd_hh_del = &((delptr)->hh); \
if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \
(head)->hh.tbl->tail = \
(UT_hash_handle*)((ptrdiff_t)((delptr)->hh.prev) + \
(head)->hh.tbl->hho); \
} \
if ((delptr)->hh.prev) { \
((UT_hash_handle*)((ptrdiff_t)((delptr)->hh.prev) + \
(head)->hh.tbl->hho))->next = (delptr)->hh.next; \
} else { \
DECLTYPE_ASSIGN(head,(delptr)->hh.next); \
} \
if (_hd_hh_del->next) { \
((UT_hash_handle*)((ptrdiff_t)_hd_hh_del->next + \
(head)->hh.tbl->hho))->prev = \
_hd_hh_del->prev; \
} \
HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \
HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \
(head)->hh.tbl->num_items--; \
} \
HASH_FSCK(hh,head); \
} while (0)
/* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */
#define HASH_FIND_STR(head,findstr,out) \
HASH_FIND(hh,head,findstr,strlen(findstr),out)
#define HASH_ADD_STR(head,strfield,add) \
HASH_ADD(hh,head,strfield,strlen(add->strfield),add)
#define HASH_FIND_INT(head,findint,out) \
HASH_FIND(hh,head,findint,sizeof(int),out)
#define HASH_ADD_INT(head,intfield,add) \
HASH_ADD(hh,head,intfield,sizeof(int),add)
#define HASH_FIND_PTR(head,findptr,out) \
HASH_FIND(hh,head,findptr,sizeof(void *),out)
#define HASH_ADD_PTR(head,ptrfield,add) \
HASH_ADD(hh,head,ptrfield,sizeof(void *),add)
#define HASH_DEL(head,delptr) \
HASH_DELETE(hh,head,delptr)
/* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined.
* This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined.
*/
#ifdef HASH_DEBUG
#define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0)
#define HASH_FSCK(hh,head) \
do { \
unsigned _bkt_i; \
unsigned _count, _bkt_count; \
char *_prev; \
struct UT_hash_handle *_thh; \
if (head) { \
_count = 0; \
for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \
_bkt_count = 0; \
_thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \
_prev = NULL; \
while (_thh) { \
if (_prev != (char*)(_thh->hh_prev)) { \
HASH_OOPS("invalid hh_prev %p, actual %p\n", \
_thh->hh_prev, _prev ); \
} \
_bkt_count++; \
_prev = (char*)(_thh); \
_thh = _thh->hh_next; \
} \
_count += _bkt_count; \
if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \
HASH_OOPS("invalid bucket count %d, actual %d\n", \
(head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \
} \
} \
if (_count != (head)->hh.tbl->num_items) { \
HASH_OOPS("invalid hh item count %d, actual %d\n", \
(head)->hh.tbl->num_items, _count ); \
} \
/* traverse hh in app order; check next/prev integrity, count */ \
_count = 0; \
_prev = NULL; \
_thh = &(head)->hh; \
while (_thh) { \
_count++; \
if (_prev !=(char*)(_thh->prev)) { \
HASH_OOPS("invalid prev %p, actual %p\n", \
_thh->prev, _prev ); \
} \
_prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \
_thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \
(head)->hh.tbl->hho) : NULL ); \
} \
if (_count != (head)->hh.tbl->num_items) { \
HASH_OOPS("invalid app item count %d, actual %d\n", \
(head)->hh.tbl->num_items, _count ); \
} \
} \
} while (0)
#else
#define HASH_FSCK(hh,head)
#endif
/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
* the descriptor to which this macro is defined for tuning the hash function.
* The app can #include <unistd.h> to get the prototype for write(2). */
#ifdef HASH_EMIT_KEYS
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \
do { \
unsigned _klen = fieldlen; \
write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \
write(HASH_EMIT_KEYS, keyptr, fieldlen); \
} while (0)
#else
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
#endif
/* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */
#ifdef HASH_FUNCTION
#define HASH_FCN HASH_FUNCTION
#else
#define HASH_FCN HASH_JEN
#endif
/* The Bernstein hash function, used in Perl prior to v5.6 */
#define HASH_BER(key,keylen,num_bkts,hashv,bkt) \
do { \
unsigned _hb_keylen=keylen; \
char *_hb_key=(char*)(key); \
(hashv) = 0; \
while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \
bkt = (hashv) & (num_bkts-1); \
} while (0)
/* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at
* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */
#define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \
do { \
unsigned _sx_i; \
char *_hs_key=(char*)(key); \
hashv = 0; \
for(_sx_i=0; _sx_i < keylen; _sx_i++) \
hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \
bkt = hashv & (num_bkts-1); \
} while (0)
#define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \
do { \
unsigned _fn_i; \
char *_hf_key=(char*)(key); \
hashv = 2166136261UL; \
for(_fn_i=0; _fn_i < keylen; _fn_i++) \
hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \
bkt = hashv & (num_bkts-1); \
} while(0)
#define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \
do { \
unsigned _ho_i; \
char *_ho_key=(char*)(key); \
hashv = 0; \
for(_ho_i=0; _ho_i < keylen; _ho_i++) { \
hashv += _ho_key[_ho_i]; \
hashv += (hashv << 10); \
hashv ^= (hashv >> 6); \
} \
hashv += (hashv << 3); \
hashv ^= (hashv >> 11); \
hashv += (hashv << 15); \
bkt = hashv & (num_bkts-1); \
} while(0)
#define HASH_JEN_MIX(a,b,c) \
do { \
a -= b; a -= c; a ^= ( c >> 13 ); \
b -= c; b -= a; b ^= ( a << 8 ); \
c -= a; c -= b; c ^= ( b >> 13 ); \
a -= b; a -= c; a ^= ( c >> 12 ); \
b -= c; b -= a; b ^= ( a << 16 ); \
c -= a; c -= b; c ^= ( b >> 5 ); \
a -= b; a -= c; a ^= ( c >> 3 ); \
b -= c; b -= a; b ^= ( a << 10 ); \
c -= a; c -= b; c ^= ( b >> 15 ); \
} while (0)
#define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \
do { \
unsigned _hj_i,_hj_j,_hj_k; \
char *_hj_key=(char*)(key); \
hashv = 0xfeedbeef; \
_hj_i = _hj_j = 0x9e3779b9; \
_hj_k = (unsigned)keylen; \
while (_hj_k >= 12) { \
_hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \
+ ( (unsigned)_hj_key[2] << 16 ) \
+ ( (unsigned)_hj_key[3] << 24 ) ); \
_hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \
+ ( (unsigned)_hj_key[6] << 16 ) \
+ ( (unsigned)_hj_key[7] << 24 ) ); \
hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \
+ ( (unsigned)_hj_key[10] << 16 ) \
+ ( (unsigned)_hj_key[11] << 24 ) ); \
\
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
\
_hj_key += 12; \
_hj_k -= 12; \
} \
hashv += keylen; \
switch ( _hj_k ) { \
case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \
case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \
case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \
case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \
case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \
case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \
case 5: _hj_j += _hj_key[4]; \
case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \
case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \
case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \
case 1: _hj_i += _hj_key[0]; \
} \
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
bkt = hashv & (num_bkts-1); \
} while(0)
/* The Paul Hsieh hash function */
#undef get16bits
#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
|| defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
#define get16bits(d) (*((const uint16_t *) (d)))
#endif
#if !defined (get16bits)
#define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \
+(uint32_t)(((const uint8_t *)(d))[0]) )
#endif
#define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \
do { \
char *_sfh_key=(char*)(key); \
uint32_t _sfh_tmp, _sfh_len = keylen; \
\
int _sfh_rem = _sfh_len & 3; \
_sfh_len >>= 2; \
hashv = 0xcafebabe; \
\
/* Main loop */ \
for (;_sfh_len > 0; _sfh_len--) { \
hashv += get16bits (_sfh_key); \
_sfh_tmp = (get16bits (_sfh_key+2) << 11) ^ hashv; \
hashv = (hashv << 16) ^ _sfh_tmp; \
_sfh_key += 2*sizeof (uint16_t); \
hashv += hashv >> 11; \
} \
\
/* Handle end cases */ \
switch (_sfh_rem) { \
case 3: hashv += get16bits (_sfh_key); \
hashv ^= hashv << 16; \
hashv ^= _sfh_key[sizeof (uint16_t)] << 18; \
hashv += hashv >> 11; \
break; \
case 2: hashv += get16bits (_sfh_key); \
hashv ^= hashv << 11; \
hashv += hashv >> 17; \
break; \
case 1: hashv += *_sfh_key; \
hashv ^= hashv << 10; \
hashv += hashv >> 1; \
} \
\
/* Force "avalanching" of final 127 bits */ \
hashv ^= hashv << 3; \
hashv += hashv >> 5; \
hashv ^= hashv << 4; \
hashv += hashv >> 17; \
hashv ^= hashv << 25; \
hashv += hashv >> 6; \
bkt = hashv & (num_bkts-1); \
} while(0)
#ifdef HASH_USING_NO_STRICT_ALIASING
/* The MurmurHash exploits some CPU's (x86,x86_64) tolerance for unaligned reads.
* For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error.
* MurmurHash uses the faster approach only on CPU's where we know it's safe.
*
* Note the preprocessor built-in defines can be emitted using:
*
* gcc -m64 -dM -E - < /dev/null (on gcc)
* cc -## a.c (where a.c is a simple test file) (Sun Studio)
*/
#if (defined(__i386__) || defined(__x86_64__) || defined(_M_IX86))
#define MUR_GETBLOCK(p,i) p[i]
#else /* non intel */
#define MUR_PLUS0_ALIGNED(p) (((unsigned long)p & 0x3) == 0)
#define MUR_PLUS1_ALIGNED(p) (((unsigned long)p & 0x3) == 1)
#define MUR_PLUS2_ALIGNED(p) (((unsigned long)p & 0x3) == 2)
#define MUR_PLUS3_ALIGNED(p) (((unsigned long)p & 0x3) == 3)
#define WP(p) ((uint32_t*)((unsigned long)(p) & ~3UL))
#if (defined(__BIG_ENDIAN__) || defined(SPARC) || defined(__ppc__) || defined(__ppc64__))
#define MUR_THREE_ONE(p) ((((*WP(p))&0x00ffffff) << 8) | (((*(WP(p)+1))&0xff000000) >> 24))
#define MUR_TWO_TWO(p) ((((*WP(p))&0x0000ffff) <<16) | (((*(WP(p)+1))&0xffff0000) >> 16))
#define MUR_ONE_THREE(p) ((((*WP(p))&0x000000ff) <<24) | (((*(WP(p)+1))&0xffffff00) >> 8))
#else /* assume little endian non-intel */
#define MUR_THREE_ONE(p) ((((*WP(p))&0xffffff00) >> 8) | (((*(WP(p)+1))&0x000000ff) << 24))
#define MUR_TWO_TWO(p) ((((*WP(p))&0xffff0000) >>16) | (((*(WP(p)+1))&0x0000ffff) << 16))
#define MUR_ONE_THREE(p) ((((*WP(p))&0xff000000) >>24) | (((*(WP(p)+1))&0x00ffffff) << 8))
#endif
#define MUR_GETBLOCK(p,i) (MUR_PLUS0_ALIGNED(p) ? ((p)[i]) : \
(MUR_PLUS1_ALIGNED(p) ? MUR_THREE_ONE(p) : \
(MUR_PLUS2_ALIGNED(p) ? MUR_TWO_TWO(p) : \
MUR_ONE_THREE(p))))
#endif
#define MUR_ROTL32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
#define MUR_FMIX(_h) \
do { \
_h ^= _h >> 16; \
_h *= 0x85ebca6b; \
_h ^= _h >> 13; \
_h *= 0xc2b2ae35l; \
_h ^= _h >> 16; \
} while(0)
#define HASH_MUR(key,keylen,num_bkts,hashv,bkt) \
do { \
const uint8_t *_mur_data = (const uint8_t*)(key); \
const int _mur_nblocks = (keylen) / 4; \
uint32_t _mur_h1 = 0xf88D5353; \
uint32_t _mur_c1 = 0xcc9e2d51; \
uint32_t _mur_c2 = 0x1b873593; \
uint32_t _mur_k1 = 0; \
const uint8_t *_mur_tail; \
const uint32_t *_mur_blocks = (const uint32_t*)(_mur_data+_mur_nblocks*4); \
int _mur_i; \
for(_mur_i = -_mur_nblocks; _mur_i; _mur_i++) { \
_mur_k1 = MUR_GETBLOCK(_mur_blocks,_mur_i); \
_mur_k1 *= _mur_c1; \
_mur_k1 = MUR_ROTL32(_mur_k1,15); \
_mur_k1 *= _mur_c2; \
\
_mur_h1 ^= _mur_k1; \
_mur_h1 = MUR_ROTL32(_mur_h1,13); \
_mur_h1 = _mur_h1*5+0xe6546b64; \
} \
_mur_tail = (const uint8_t*)(_mur_data + _mur_nblocks*4); \
_mur_k1=0; \
switch((keylen) & 3) { \
case 3: _mur_k1 ^= _mur_tail[2] << 16; \
case 2: _mur_k1 ^= _mur_tail[1] << 8; \
case 1: _mur_k1 ^= _mur_tail[0]; \
_mur_k1 *= _mur_c1; \
_mur_k1 = MUR_ROTL32(_mur_k1,15); \
_mur_k1 *= _mur_c2; \
_mur_h1 ^= _mur_k1; \
} \
_mur_h1 ^= (keylen); \
MUR_FMIX(_mur_h1); \
hashv = _mur_h1; \
bkt = hashv & (num_bkts-1); \
} while(0)
#endif /* HASH_USING_NO_STRICT_ALIASING */
/* key comparison function; return 0 if keys equal */
#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
/* iterate over items in a known bucket to find desired item */
#define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \
do { \
if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \
else out=NULL; \
while (out) { \
if ((out)->hh.keylen == keylen_in) { \
if ((HASH_KEYCMP((out)->hh.key,keyptr,keylen_in)) == 0) break; \
} \
if ((out)->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,(out)->hh.hh_next)); \
else out = NULL; \
} \
} while(0)
/* add an item to a bucket */
#define HASH_ADD_TO_BKT(head,addhh) \
do { \
head.count++; \
(addhh)->hh_next = head.hh_head; \
(addhh)->hh_prev = NULL; \
if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \
(head).hh_head=addhh; \
if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \
&& (addhh)->tbl->noexpand != 1) { \
HASH_EXPAND_BUCKETS((addhh)->tbl); \
} \
} while(0)
/* remove an item from a given bucket */
#define HASH_DEL_IN_BKT(hh,head,hh_del) \
(head).count--; \
if ((head).hh_head == hh_del) { \
(head).hh_head = hh_del->hh_next; \
} \
if (hh_del->hh_prev) { \
hh_del->hh_prev->hh_next = hh_del->hh_next; \
} \
if (hh_del->hh_next) { \
hh_del->hh_next->hh_prev = hh_del->hh_prev; \
}
/* Bucket expansion has the effect of doubling the number of buckets
* and redistributing the items into the new buckets. Ideally the
* items will distribute more or less evenly into the new buckets
* (the extent to which this is true is a measure of the quality of
* the hash function as it applies to the key domain).
*
* With the items distributed into more buckets, the chain length
* (item count) in each bucket is reduced. Thus by expanding buckets
* the hash keeps a bound on the chain length. This bounded chain
* length is the essence of how a hash provides constant time lookup.
*
* The calculation of tbl->ideal_chain_maxlen below deserves some
* explanation. First, keep in mind that we're calculating the ideal
* maximum chain length based on the *new* (doubled) bucket count.
* In fractions this is just n/b (n=number of items,b=new num buckets).
* Since the ideal chain length is an integer, we want to calculate
* ceil(n/b). We don't depend on floating point arithmetic in this
* hash, so to calculate ceil(n/b) with integers we could write
*
* ceil(n/b) = (n/b) + ((n%b)?1:0)
*
* and in fact a previous version of this hash did just that.
* But now we have improved things a bit by recognizing that b is
* always a power of two. We keep its base 2 log handy (call it lb),
* so now we can write this with a bit shift and logical AND:
*
* ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0)
*
*/
#define HASH_EXPAND_BUCKETS(tbl) \
do { \
unsigned _he_bkt; \
unsigned _he_bkt_i; \
struct UT_hash_handle *_he_thh, *_he_hh_nxt; \
UT_hash_bucket *_he_new_buckets, *_he_newbkt; \
_he_new_buckets = (UT_hash_bucket*)uthash_malloc( \
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \
memset(_he_new_buckets, 0, \
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
tbl->ideal_chain_maxlen = \
(tbl->num_items >> (tbl->log2_num_buckets+1)) + \
((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \
tbl->nonideal_items = 0; \
for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \
{ \
_he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \
while (_he_thh) { \
_he_hh_nxt = _he_thh->hh_next; \
HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \
_he_newbkt = &(_he_new_buckets[ _he_bkt ]); \
if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \
tbl->nonideal_items++; \
_he_newbkt->expand_mult = _he_newbkt->count / \
tbl->ideal_chain_maxlen; \
} \
_he_thh->hh_prev = NULL; \
_he_thh->hh_next = _he_newbkt->hh_head; \
if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \
_he_thh; \
_he_newbkt->hh_head = _he_thh; \
_he_thh = _he_hh_nxt; \
} \
} \
uthash_free( tbl->buckets, tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \
tbl->num_buckets *= 2; \
tbl->log2_num_buckets++; \
tbl->buckets = _he_new_buckets; \
tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \
(tbl->ineff_expands+1) : 0; \
if (tbl->ineff_expands > 1) { \
tbl->noexpand=1; \
uthash_noexpand_fyi(tbl); \
} \
uthash_expand_fyi(tbl); \
} while(0)
/* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */
/* Note that HASH_SORT assumes the hash handle name to be hh.
* HASH_SRT was added to allow the hash handle name to be passed in. */
#define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn)
#define HASH_SRT(hh,head,cmpfcn) \
do { \
unsigned _hs_i; \
unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \
struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \
if (head) { \
_hs_insize = 1; \
_hs_looping = 1; \
_hs_list = &((head)->hh); \
while (_hs_looping) { \
_hs_p = _hs_list; \
_hs_list = NULL; \
_hs_tail = NULL; \
_hs_nmerges = 0; \
while (_hs_p) { \
_hs_nmerges++; \
_hs_q = _hs_p; \
_hs_psize = 0; \
for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \
_hs_psize++; \
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
((void*)((char*)(_hs_q->next) + \
(head)->hh.tbl->hho)) : NULL); \
if (! (_hs_q) ) break; \
} \
_hs_qsize = _hs_insize; \
while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \
if (_hs_psize == 0) { \
_hs_e = _hs_q; \
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
((void*)((char*)(_hs_q->next) + \
(head)->hh.tbl->hho)) : NULL); \
_hs_qsize--; \
} else if ( (_hs_qsize == 0) || !(_hs_q) ) { \
_hs_e = _hs_p; \
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
((void*)((char*)(_hs_p->next) + \
(head)->hh.tbl->hho)) : NULL); \
_hs_psize--; \
} else if (( \
cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \
DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \
) <= 0) { \
_hs_e = _hs_p; \
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
((void*)((char*)(_hs_p->next) + \
(head)->hh.tbl->hho)) : NULL); \
_hs_psize--; \
} else { \
_hs_e = _hs_q; \
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
((void*)((char*)(_hs_q->next) + \
(head)->hh.tbl->hho)) : NULL); \
_hs_qsize--; \
} \
if ( _hs_tail ) { \
_hs_tail->next = ((_hs_e) ? \
ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \
} else { \
_hs_list = _hs_e; \
} \
_hs_e->prev = ((_hs_tail) ? \
ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \
_hs_tail = _hs_e; \
} \
_hs_p = _hs_q; \
} \
_hs_tail->next = NULL; \
if ( _hs_nmerges <= 1 ) { \
_hs_looping=0; \
(head)->hh.tbl->tail = _hs_tail; \
DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \
} \
_hs_insize *= 2; \
} \
HASH_FSCK(hh,head); \
} \
} while (0)
/* This function selects items from one hash into another hash.
* The end result is that the selected items have dual presence
* in both hashes. There is no copy of the items made; rather
* they are added into the new hash through a secondary hash
* hash handle that must be present in the structure. */
#define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \
do { \
unsigned _src_bkt, _dst_bkt; \
void *_last_elt=NULL, *_elt; \
UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \
ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \
if (src) { \
for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \
for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \
_src_hh; \
_src_hh = _src_hh->hh_next) { \
_elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \
if (cond(_elt)) { \
_dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \
_dst_hh->key = _src_hh->key; \
_dst_hh->keylen = _src_hh->keylen; \
_dst_hh->hashv = _src_hh->hashv; \
_dst_hh->prev = _last_elt; \
_dst_hh->next = NULL; \
if (_last_elt_hh) { _last_elt_hh->next = _elt; } \
if (!dst) { \
DECLTYPE_ASSIGN(dst,_elt); \
HASH_MAKE_TABLE(hh_dst,dst); \
} else { \
_dst_hh->tbl = (dst)->hh_dst.tbl; \
} \
HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \
HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \
(dst)->hh_dst.tbl->num_items++; \
_last_elt = _elt; \
_last_elt_hh = _dst_hh; \
} \
} \
} \
} \
HASH_FSCK(hh_dst,dst); \
} while (0)
#define HASH_CLEAR(hh,head) \
do { \
if (head) { \
uthash_free((head)->hh.tbl->buckets, \
(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket)); \
HASH_BLOOM_FREE((head)->hh.tbl); \
uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \
(head)=NULL; \
} \
} while(0)
#ifdef NO_DECLTYPE
#define HASH_ITER(hh,head,el,tmp) \
for((el)=(head), (*(char**)(&(tmp)))=(char*)((head)?(head)->hh.next:NULL); \
el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL))
#else
#define HASH_ITER(hh,head,el,tmp) \
for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL); \
el; (el)=(tmp),(tmp)=DECLTYPE(el)((tmp)?(tmp)->hh.next:NULL))
#endif
/* obtain a count of items in the hash */
#define HASH_COUNT(head) HASH_CNT(hh,head)
#define HASH_CNT(hh,head) ((head)?((head)->hh.tbl->num_items):0)
typedef struct UT_hash_bucket {
struct UT_hash_handle *hh_head;
unsigned count;
/* expand_mult is normally set to 0. In this situation, the max chain length
* threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If
* the bucket's chain exceeds this length, bucket expansion is triggered).
* However, setting expand_mult to a non-zero value delays bucket expansion
* (that would be triggered by additions to this particular bucket)
* until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH.
* (The multiplier is simply expand_mult+1). The whole idea of this
* multiplier is to reduce bucket expansions, since they are expensive, in
* situations where we know that a particular bucket tends to be overused.
* It is better to let its chain length grow to a longer yet-still-bounded
* value, than to do an O(n) bucket expansion too often.
*/
unsigned expand_mult;
} UT_hash_bucket;
/* random signature used only to find hash tables in external analysis */
#define HASH_SIGNATURE 0xa0111fe1
#define HASH_BLOOM_SIGNATURE 0xb12220f2
typedef struct UT_hash_table {
UT_hash_bucket *buckets;
unsigned num_buckets, log2_num_buckets;
unsigned num_items;
struct UT_hash_handle *tail; /* tail hh in app order, for fast append */
ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */
/* in an ideal situation (all buckets used equally), no bucket would have
* more than ceil(#items/#buckets) items. that's the ideal chain length. */
unsigned ideal_chain_maxlen;
/* nonideal_items is the number of items in the hash whose chain position
* exceeds the ideal chain maxlen. these items pay the penalty for an uneven
* hash distribution; reaching them in a chain traversal takes >ideal steps */
unsigned nonideal_items;
/* ineffective expands occur when a bucket doubling was performed, but
* afterward, more than half the items in the hash had nonideal chain
* positions. If this happens on two consecutive expansions we inhibit any
* further expansion, as it's not helping; this happens when the hash
* function isn't a good fit for the key domain. When expansion is inhibited
* the hash will still work, albeit no longer in constant time. */
unsigned ineff_expands, noexpand;
uint32_t signature; /* used only to find hash tables in external analysis */
#ifdef HASH_BLOOM
uint32_t bloom_sig; /* used only to test bloom exists in external analysis */
uint8_t *bloom_bv;
char bloom_nbits;
#endif
} UT_hash_table;
typedef struct UT_hash_handle {
struct UT_hash_table *tbl;
void *prev; /* prev element in app order */
void *next; /* next element in app order */
struct UT_hash_handle *hh_prev; /* previous hh in bucket order */
struct UT_hash_handle *hh_next; /* next hh in bucket order */
void *key; /* ptr to enclosing struct's key */
unsigned keylen; /* enclosing struct's key len */
unsigned hashv; /* result of hash-fcn(key) */
} UT_hash_handle;
#endif /* UTHASH_H */

View File

@ -111,7 +111,6 @@ INTERFACE_HEADERS = \
$(srcdir)/include/clause_list.h \
$(srcdir)/include/dswiatoms.h \
$(srcdir)/include/udi.h \
$(srcdir)/include/rtree_udi.h \
$(srcdir)/include/yap_structs.h \
$(srcdir)/include/YapInterface.h \
$(srcdir)/include/SWI-Prolog.h \
@ -263,8 +262,6 @@ C_SOURCES= \
$(srcdir)/C/threads.c \
$(srcdir)/C/tracer.c $(srcdir)/C/unify.c $(srcdir)/C/userpreds.c \
$(srcdir)/C/udi.c \
$(srcdir)/packages/udi/rtree.c \
$(srcdir)/packages/udi/rtree_udi.c \
$(srcdir)/C/utilpreds.c $(srcdir)/C/write.c $(srcdir)/console/yap.c \
$(srcdir)/C/yap-args.c \
$(srcdir)/C/ypstdio.c \
@ -371,7 +368,7 @@ ENGINE_OBJECTS = \
parser.o qlyr.o qlyw.o range.o \
save.o scanner.o sort.o stdpreds.o \
sysbits.o threads.o tracer.o \
udi.o rtree.o rtree_udi.o\
udi.o\
unify.o userpreds.o utilpreds.o \
yap-args.o write.o \
blobs.o swi.o ypstdio.o $(IOLIB_OBJECTS) @MPI_OBJS@
@ -475,12 +472,6 @@ sysbits.o: $(srcdir)/C/sysbits.c config.h
udi.o: $(srcdir)/C/udi.c config.h
$(CC) -c $(C_INTERF_FLAGS) $(srcdir)/C/udi.c -o $@
rtree.o: $(srcdir)/packages/udi/rtree.c config.h
$(CC) -c $(C_INTERF_FLAGS) $(srcdir)/packages/udi/rtree.c -o $@
rtree_udi.o: $(srcdir)/packages/udi/rtree_udi.c config.h
$(CC) -c $(C_INTERF_FLAGS) $(srcdir)/packages/udi/rtree_udi.c -o $@
yap.o: $(srcdir)/console/yap.c config.h
$(CC) -c $(CFLAGS) -I$(srcdir)/include $(srcdir)/console/yap.c -o $@

View File

@ -24,6 +24,8 @@
/* Should we use gmp ? */
#undef HAVE_LIBGMP
#undef HAVE_LIBJUDY
/* What MPI libraries are there? */
#define HAVE_LIBMPI 0
#define HAVE_LIBMPICH
@ -67,6 +69,7 @@
#undef HAVE_GMP_H
#undef HAVE_IEEEFP_H
#undef HAVE_IO_H
#undef HAVE_JUDY_H
#undef HAVE_LIMITS_H
#undef HAVE_LOCALE_H
#undef HAVE_MACH_O_DYLD_H
@ -326,6 +329,10 @@
#define USE_GMP 1
#endif
#if HAVE_JUDY_H && HAVE_LIBJUDY
#define USE_JUDY 1
#endif
/* Should we use MPI ? */
#if defined(HAVE_MPI_H) && (defined(HAVE_LIBMPI) || defined(HAVE_LIBMPICH))
#define HAVE_MPI 1

81
configure vendored
View File

@ -849,6 +849,7 @@ enable_clpbn_bp
with_gmp
with_R
with_python
with_judy
with_minisat
with_cudd
enable_myddas
@ -1531,6 +1532,7 @@ Optional Packages:
--with-gmp=DIR use GNU Multiple Precision in DIR
--with-R=DIR interface to R language
--with-python=DIR interface to R language
--with-judy=DIR UDI needs judy library
--enable-minisat use minisat interface
--with-cudd=DIR use CUDD package in DIR
--with-java=JAVA_HOME use Java instalation in JAVA_HOME
@ -4717,6 +4719,21 @@ fi
# Check whether --with-judy was given.
if test "${with_judy+set}" = set; then :
withval=$with_judy; if test "$withval" = yes; then
yap_cv_judy=yes
elif test "$withval" = no; then
yap_cv_judy=no
else
yap_cv_judy=$withval
fi
else
yap_cv_judy=yes
fi
# Check whether --with-minisat was given.
if test "${with_minisat+set}" = set; then :
withval=$with_minisat; if test "$withval" = yes; then
@ -6910,6 +6927,56 @@ else
ENABLE_PYTHON="@# "
fi
if test "$yap_cv_judy" != "no"; then
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for Judy1Set in -lJudy" >&5
$as_echo_n "checking for Judy1Set in -lJudy... " >&6; }
if ${ac_cv_lib_Judy_Judy1Set+:} false; then :
$as_echo_n "(cached) " >&6
else
ac_check_lib_save_LIBS=$LIBS
LIBS="-lJudy $LIBS"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
/* Override any GCC internal prototype to avoid an error.
Use char because int might match the return type of a GCC
builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char Judy1Set ();
int
main ()
{
return Judy1Set ();
;
return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
ac_cv_lib_Judy_Judy1Set=yes
else
ac_cv_lib_Judy_Judy1Set=no
fi
rm -f core conftest.err conftest.$ac_objext \
conftest$ac_exeext conftest.$ac_ext
LIBS=$ac_check_lib_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_Judy_Judy1Set" >&5
$as_echo "$ac_cv_lib_Judy_Judy1Set" >&6; }
if test "x$ac_cv_lib_Judy_Judy1Set" = xyes; then :
cat >>confdefs.h <<_ACEOF
#define HAVE_LIBJUDY 1
_ACEOF
LIBS="-lJudy $LIBS"
else
as_fn_error $? "libJudy not found, UDI will only work with one Index at a time" "$LINENO" 5
fi
fi
if test "$yap_cv_myddas" != "no"
then
@ -9179,6 +9246,20 @@ fi
done
fi
if test "$yap_cv_judy" != "no"; then
for ac_header in Judy.h
do :
ac_fn_c_check_header_mongrel "$LINENO" "Judy.h" "ac_cv_header_Judy_h" "$ac_includes_default"
if test "x$ac_cv_header_Judy_h" = xyes; then :
cat >>confdefs.h <<_ACEOF
#define HAVE_JUDY_H 1
_ACEOF
fi
done
fi
if test "$yap_cv_myddas" != "no"
then

View File

@ -254,8 +254,18 @@ AC_ARG_WITH(python,
yap_cv_python=$withval
fi,
[yap_cv_python=no])
AC_ARG_WITH(judy,
[ --with-judy[=DIR] UDI needs judy library],
if test "$withval" = yes; then
yap_cv_judy=yes
elif test "$withval" = no; then
yap_cv_judy=no
else
yap_cv_judy=$withval
fi,
[yap_cv_judy=yes])
dnl best test we could do.
AC_ARG_WITH(minisat,
[ --enable-minisat use minisat interface],
if test "$withval" = yes; then
@ -869,6 +879,10 @@ else
ENABLE_PYTHON="@# "
fi
if test "$yap_cv_judy" != "no"; then
AC_CHECK_LIB(Judy, Judy1Set,,[AC_MSG_ERROR([libJudy not found, UDI will only work with one Index at a time])])
fi
dnl if test "$yap_cv_cudd" != "no"
dnl then
dnl AC_CHECK_LIB(cudd,Cudd_Init)
@ -1700,6 +1714,9 @@ if test "$yap_cv_gmp" != "no"
then
AC_CHECK_HEADERS(gmp.h)
fi
if test "$yap_cv_judy" != "no"; then
AC_CHECK_HEADERS(Judy.h)
fi
if test "$yap_cv_myddas" != "no"
then
AC_CHECK_HEADERS(mysql/mysql.h)

View File

@ -1,24 +0,0 @@
#ifndef _RTREE_UDI_
#define _RTREE_UDI_
#ifndef _RTREE_
typedef void control_t;
#endif
/*Prolog term from :- udi(a(-,+,+)).
User defined index announce
*/
extern control_t *RtreeUdiInit (Term spec,
void *pred,
int arity);
/*this is called in each asserted term that was declared to udi_init*/
extern control_t *RtreeUdiInsert (Term term, /*asserted term*/
control_t *control,
void *clausule); /*to store in tree and return
in search*/
extern void *RtreeUdiSearch (control_t *control);
extern int RtreeUdiDestroy(control_t *control);
#endif /* _RTREE_UDI_ */

View File

@ -1,45 +1,85 @@
/*
* This file is part of the YAP Prolog
*
* User Defined Indexing was developed by:
* David Vaz <davidvaz@dcc.fc.up.pt>
* Vitor Santos Costa <vsc@dcc.fc.up.pt>
*
* UDI Indexing Interface:
*
* Each new indexing mechanism should register it self by filling up a
* UdiControlBlock and calling Yap_UdiRegister(UdiControlBlock).
*
* UdiControlBlock has the main declaration that triggers the
* indexing structure as well as the pointers to the needed functions
* called at the appropriate times.
*
* For now each indexing structure only works with a single argument
* even when multiple arguments are indexed with the same struture.
*
* TODO: think of alternative ways of support both cases, e.g. a rtree
* does not benefit from multiple rtree indexing, but a hash table do
*/
/*chamada a cada index/2
controi estrutura de control, para definir a indexação, contem a
rtree p.e.
retorna a estrutura de control
*/
typedef void *
(* Yap_UdiInit)(
Term spec, /* mode spec */
void *pred, /* pass predicate information */
int arity);
/* This is called upon udi mode spec call, and the purpose is to allow
* the indexing struture to initialize itself.
* Should return the need opaque struture to be used in future calls
*
* arg is used to track the specific call, on multiple indexing with the
* same struture
*/
typedef void * (* Yap_UdiInit)
(YAP_Term spec,
int arg, /* argument regarding this call */
int arity);
/*chamada a cada assert*/
typedef void *
(* Yap_UdiInsert)(Term t, /* termo asserted */
void *control, /* estrutura de control*/
void *clausule); /* valor a guardar na arvore, para retornar na pesquisa */
/* Upon each assert the struture insert method is called to perform
* its work
*/
typedef void * (* Yap_UdiInsert)
(void *control, /* indexing structure opaque handle */
YAP_Term term, /* asserted argument */
int arg, /* argument regarding this call */
void *data); /* value to return on search */
/* chamada cada vez que um predicado indexado aparece no código
Returns:
NULL quando não indexação usavel no predicado (fallback to
yap indexing)
FALSE
TRY_RETRY_TRUST quando resultados positivos
*/
typedef void *
(* Yap_UdiSearch)(void * control);
/* Callback for each value found in a search
* if it returns FALSE the search should be immediately aborted
*/
typedef int (* Yap_UdiCallback)
(void *key, /* index key */
void *data, /* data */
void *arg); /* auxiliary data to callback */
/* chamada cada vez que um predicado indexado aparece no código
Returns:
NULL quando não indexação usavel no predicado (fallback to
yap indexing)
FALSE
TRY_RETRY_TRUST quando resultados positivos
*/
typedef int
(* Yap_UdiDestroy)(void * control);
/* Called upon search
*
* If there is any search to do with this structure should return >= 0
* corresponding to the values found
*
* returns -1 if there is nothing to search with this indexing structure
* e.g. a Variable as argument
*/
typedef int (* Yap_UdiSearch)
(void * control, /* indexing structure opaque handle */
int arg, /* argument regarding this call */
Yap_UdiCallback f, /* callback on each found value */
void *args); /* auxiliary data to callback */
/* Called upon abolish of the term
* to allow for a clean destroy of the indexing structures
*/
typedef int (* Yap_UdiDestroy)
(void * control);
/*
* Main structure used in UDI
*/
typedef struct udi_control_block {
Yap_UdiInit init;
Yap_UdiInsert insert;
Yap_UdiSearch search;
YAP_Atom decl; //atom that triggers this indexing structure
Yap_UdiInit init;
Yap_UdiInsert insert;
Yap_UdiSearch search;
Yap_UdiDestroy destroy;
} *UdiControlBlock;
} * UdiControlBlock;
/* Register a new indexing structure */
void Yap_UdiRegister(UdiControlBlock);

1
packages/udi Submodule

@ -0,0 +1 @@
Subproject commit 13ae724d30e4c9dd56ddde63cba4a34f1844c099

View File

@ -1,7 +0,0 @@
This directory contains support for user defined indexers, currently:
- RTrees
For Examples and Tests proceed as follows:
git clone git://yap.dcc.fc.up.pt/udi-examples

View File

@ -1,524 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <float.h>
#include "rtree.h"
static node_t RTreeNewNode (void);
static void RTreeDestroyNode (node_t);
static void RTreeNodeInit (node_t);
static int RTreeSearchNode (node_t, rect_t, SearchHitCallback, void *);
static int RTreeInsertNode (node_t, int, rect_t,void *,node_t *);
static int RTreePickBranch (rect_t, node_t);
static int RTreeAddBranch(node_t, branch_t, node_t *);
static void RTreeSplitNode (node_t, branch_t, node_t *);
static void RTreePickSeeds(partition_t *, node_t, node_t);
static void RTreeNodeAddBranch(rect_t *, node_t, branch_t);
static void RTreePickNext(partition_t *, node_t, node_t);
static rect_t RTreeNodeCover(node_t);
static double RectArea (rect_t);
static rect_t RectCombine (rect_t, rect_t);
static int RectOverlap (rect_t, rect_t);
static void RectPrint (rect_t);
static partition_t PartitionNew (void);
static void PartitionPush (partition_t *, branch_t);
static branch_t PartitionPop (partition_t *);
static branch_t PartitionGet (partition_t *, int);
rtree_t RTreeNew (void)
{
rtree_t t;
t = RTreeNewNode();
t->level = 0; /*leaf*/
return t;
}
void RTreeDestroy (rtree_t t)
{
if (t)
RTreeDestroyNode (t);
}
static node_t RTreeNewNode (void)
{
node_t n;
n = (node_t) malloc (sizeof(*n));
assert(n);
RTreeNodeInit(n);
return n;
}
static void RTreeDestroyNode (node_t node)
{
int i;
if (node->level == 0) /* leaf level*/
{
for (i = 0; i < MAXCARD; i++)
if (node->branch[i].child)
;/* allow user free data*/
else
break;
}
else
{
for (i = 0; i < MAXCARD; i++)
if (node->branch[i].child)
RTreeDestroyNode (node->branch[i].child);
else
break;
}
free (node);
}
static void RTreeNodeInit (node_t n)
{
memset((void *) n,0, sizeof(*n));
n->level = -1;
}
int RTreeSearch (rtree_t t, rect_t s, SearchHitCallback f, void *arg)
{
assert(t);
return RTreeSearchNode(t,s,f,arg);
}
static int RTreeSearchNode (node_t n, rect_t s, SearchHitCallback f, void *arg)
{
int i;
int c = 0;
if (n->level > 0)
{
for (i = 0; i < MAXCARD; i++)
if (n->branch[i].child &&
RectOverlap (s,n->branch[i].mbr))
c += RTreeSearchNode ((node_t) n->branch[i].child, s, f, arg);
}
else
{
for (i = 0; i < MAXCARD; i++)
if (n->branch[i].child &&
RectOverlap (s,n->branch[i].mbr))
{
c ++;
if (f)
if ( !f(n->branch[i].mbr,n->branch[i].child,arg))
return c;
}
}
return c;
}
void RTreeInsert (rtree_t *t, rect_t r, void *data)
{
node_t n2;
node_t new_root;
branch_t b;
assert(t && *t);
if (RTreeInsertNode(*t, 0, r, data, &n2))
/* deal with root split */
{
new_root = RTreeNewNode();
new_root->level = (*t)->level + 1;
b.mbr = RTreeNodeCover(*t);
b.child = (void *) *t;
RTreeAddBranch(new_root, b, NULL);
b.mbr = RTreeNodeCover(n2);
b.child = (void *) n2;
RTreeAddBranch(new_root, b, NULL);
*t = new_root;
}
}
static int RTreeInsertNode (node_t n, int level,
rect_t r, void *data,
node_t *new_node)
{
int i;
node_t n2;
branch_t b;
assert(n && new_node);
assert(level >= 0 && level <= n->level);
if (n->level > level)
{
i = RTreePickBranch(r,n);
if (!RTreeInsertNode((node_t) n->branch[i].child, level,
r, data,&n2)) /* not split */
{
n->branch[i].mbr = RectCombine(r,n->branch[i].mbr);
return FALSE;
}
else /* node split */
{
n->branch[i].mbr = RTreeNodeCover(n->branch[i].child);
b.child = n2;
b.mbr = RTreeNodeCover(n2);
return RTreeAddBranch(n, b, new_node);
}
}
else /*insert level*/
{
b.mbr = r;
b.child = data;
return RTreeAddBranch(n, b, new_node);
}
}
static int RTreeAddBranch(node_t n, branch_t b, node_t *new_node)
{
int i;
assert(n);
if (n->count < MAXCARD) /*split not necessary*/
{
for (i = 0; i < MAXCARD; i++)
if (n->branch[i].child == NULL)
{
n->branch[i] = b;
n->count ++;
break;
}
return FALSE;
}
else /*needs to split*/
{
assert(new_node);
RTreeSplitNode (n, b, new_node);
return TRUE;
}
}
static int RTreePickBranch (rect_t r, node_t n)
{
int i;
double area;
double inc_area;
rect_t tmp;
int best_i;
double best_inc;
double best_i_area;
best_i = 0;
best_inc = DBL_MAX; /* double Max value */
best_i_area = DBL_MAX;
for (i = 0; i < MAXCARD; i++)
if (n->branch[i].child)
{
area = RectArea (n->branch[i].mbr);
tmp = RectCombine (r, n->branch[i].mbr);
inc_area = RectArea (tmp) - area;
if (inc_area < best_inc)
{
best_inc = inc_area;
best_i = i;
best_i_area = area;
}
else if (inc_area == best_inc && best_i_area > area)
{
best_inc = inc_area;
best_i = i;
best_i_area = area;
}
}
else
break;
return best_i;
}
static void RTreeSplitNode (node_t n, branch_t b, node_t *new_node)
{
partition_t p;
int level;
int i;
assert(n);
assert(new_node);
p = PartitionNew();
for (i = 0; i < MAXCARD; i ++)
PartitionPush(&p,n->branch[i]);
PartitionPush(&p,b);
level = n->level;
RTreeNodeInit(n);
n->level = level;
*new_node = RTreeNewNode();
(*new_node)->level = level;
RTreePickSeeds(&p, n, *new_node);
while (p.n)
if (n->count + p.n <= MINCARD)
/* first group (n) needs all entries */
RTreeNodeAddBranch(&(p.cover[0]), n, PartitionPop(&p));
else if ((*new_node)->count + p.n <= MINCARD)
/* second group (new_node) needs all entries */
RTreeNodeAddBranch(&(p.cover[1]), *new_node, PartitionPop(&p));
else
RTreePickNext(&p, n, *new_node);
}
static void RTreePickNext(partition_t *p, node_t n1, node_t n2)
/* linear version */
{
branch_t b;
double area[2], inc_area[2];
rect_t tmp;
b = PartitionPop(p);
area[0] = RectArea (p->cover[0]);
tmp = RectCombine (p->cover[0], b.mbr);
inc_area[0] = RectArea (tmp) - area[0];
area[1] = RectArea (p->cover[1]);
tmp = RectCombine (p->cover[1], b.mbr);
inc_area[1] = RectArea (tmp) - area[1];
if (inc_area[0] < inc_area[1] ||
(inc_area[0] == inc_area[1] && area[0] < area[1]))
RTreeNodeAddBranch(&(p->cover[0]),n1,b);
else
RTreeNodeAddBranch(&(p->cover[1]),n2,b);
}
static void RTreePickSeeds(partition_t *p, node_t n1, node_t n2)
/* puts in index 0 of each node the resulting entry, forming the two
groups
This is the linear version
*/
{
int dim,high, i;
int highestLow[NUMDIMS], lowestHigh[NUMDIMS];
double width[NUMDIMS];
int seed0, seed1;
double sep, best_sep;
assert(p->n == MAXCARD + 1);
for (dim = 0; dim < NUMDIMS; dim++)
{
high = dim + NUMDIMS;
highestLow[dim] = lowestHigh[dim] = 0;
for (i = 1; i < MAXCARD +1; i++)
{
if (p->buffer[i].mbr.coords[dim] >
p->buffer[highestLow[dim]].mbr.coords[dim])
highestLow[dim] = i;
if (p->buffer[i].mbr.coords[high] <
p->buffer[lowestHigh[dim]].mbr.coords[high])
lowestHigh[dim] = i;
}
width[dim] = p->cover_all.coords[high] - p->cover_all.coords[dim];
assert(width[dim] >= 0);
}
seed0 = lowestHigh[0];
seed1 = highestLow[0];
best_sep = 0;
for (dim = 0; dim < NUMDIMS; dim ++)
{
high = dim + NUMDIMS;
sep = (p->buffer[highestLow[dim]].mbr.coords[dim] -
p->buffer[lowestHigh[dim]].mbr.coords[high]) / width[dim];
if (sep > best_sep)
{
seed0 = lowestHigh[dim];
seed1 = highestLow[dim];
best_sep = sep;
}
}
/* assert (seed0 != seed1); */
if (seed0 > seed1)
{
RTreeNodeAddBranch(&(p->cover[0]),n1,PartitionGet(p,seed0));
RTreeNodeAddBranch(&(p->cover[1]),n2,PartitionGet(p,seed1));
}
else if (seed0 < seed1)
{
RTreeNodeAddBranch(&(p->cover[0]),n1,PartitionGet(p,seed1));
RTreeNodeAddBranch(&(p->cover[1]),n2,PartitionGet(p,seed0));
}
}
static void RTreeNodeAddBranch(rect_t *r, node_t n, branch_t b)
{
int i;
assert(n);
assert(n->count < MAXCARD);
for (i = 0; i < MAXCARD; i++)
if (n->branch[i].child == NULL)
{
n->branch[i] = b;
n->count ++;
break;
}
*r = RectCombine(*r,b.mbr);
}
void RTreePrint(node_t t)
{
int i;
/* printf("rtree([_,_,_,_,_]).\n"); */
printf("rtree(%p,%d,[",t,t->level);
for (i = 0; i < MAXCARD; i++)
{
if (t->branch[i].child != NULL)
{
printf("(%p,",t->branch[i].child);
RectPrint(t->branch[i].mbr);
printf(")");
}
else
{
printf("nil");
}
if (i < MAXCARD-1)
printf(",");
}
printf("]).\n");
if (t->level != 0)
for (i = 0; i < MAXCARD; i++)
if (t->branch[i].child != NULL)
RTreePrint((node_t) t->branch[i].child);
else
break;
}
/*
* Partition related
*/
static partition_t PartitionNew (void)
{
partition_t p;
memset((void *) &p,0, sizeof(p));
p.cover[0] = p.cover[1] = p.cover_all = RectInit();
return p;
}
static void PartitionPush (partition_t *p, branch_t b)
{
assert(p->n < MAXCARD + 1);
p->buffer[p->n] = b;
p->n ++;
p->cover_all = RectCombine(p->cover_all,b.mbr);
}
static branch_t PartitionPop (partition_t *p)
{
assert(p->n > 0);
p->n --;
return p->buffer[p->n];
}
static branch_t PartitionGet (partition_t *p, int n)
{
branch_t b;
assert (p->n > n);
b = p->buffer[n];
p->buffer[n] = PartitionPop(p);
return b;
}
/*
* Rect related
*/
rect_t RectInit (void)
{
rect_t r = {{DBL_MAX, DBL_MAX, DBL_MIN, DBL_MIN}};
return (r);
}
static double RectArea (rect_t r)
{
int i;
double area;
for (i = 0,area = 1; i < NUMDIMS; i++)
area *= r.coords[i+NUMDIMS] - r.coords[i];
/* area = (r.coords[1] - r.coords[0]) * */
/* (r.coords[3] - r.coords[2]); */
return area;
}
static rect_t RectCombine (rect_t r, rect_t s)
{
int i;
rect_t new_rect;
for (i = 0; i < NUMDIMS; i++)
{
new_rect.coords[i] = MIN(r.coords[i],s.coords[i]);
new_rect.coords[i+NUMDIMS] = MAX(r.coords[i+NUMDIMS],s.coords[i+NUMDIMS]);
}
return new_rect;
}
static int RectOverlap (rect_t r, rect_t s)
{
int i;
for (i = 0; i < NUMDIMS; i++)
if (r.coords[i] > s.coords[i + NUMDIMS] ||
s.coords[i] > r.coords[i + NUMDIMS])
return FALSE;
return TRUE;
}
static rect_t RTreeNodeCover(node_t n)
{
int i;
rect_t r = RectInit();
for (i = 0; i < MAXCARD; i++)
if (n->branch[i].child)
{
r = RectCombine (r, n->branch[i].mbr);
}
else
break;
return r;
}
static void RectPrint (rect_t r)
{
int i;
printf("[");
for (i = 0; i < 2*NUMDIMS; i++)
{
printf("%f",r.coords[i]);
if ( i < 2*NUMDIMS - 1)
printf(",");
}
printf("]");
}

View File

@ -1,63 +0,0 @@
#ifndef _RTREE_
#define _RTREE_
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE !FALSE
#endif
#define NUMDIMS 2 /* 2d */
struct Rect
{
double coords[2*NUMDIMS]; /* x1min, y1min, ... , x1max, y1max, ...*/
};
typedef struct Rect rect_t;
struct Branch
{
rect_t mbr;
void * child; /*void * so user can store whatever he needs, in case
of non-leaf ndes it stores the child-pointer*/
};
typedef struct Branch branch_t;
#define PGSIZE 196
#define MAXCARD (int)((PGSIZE-(2*sizeof(int)))/ sizeof(struct Branch))
#define MINCARD (MAXCARD / 2)
struct Node
{
int count;
int level;
branch_t branch[MAXCARD];
};
typedef struct Node * node_t;
typedef node_t rtree_t;
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/* CallBack to search function */
typedef int (*SearchHitCallback)(rect_t r, void *data, void *arg);
extern rtree_t RTreeNew (void);
extern void RTreeInsert (rtree_t *, rect_t, void *);
extern int RTreeSearch (rtree_t, rect_t, SearchHitCallback, void *);
extern void RTreeDestroy (rtree_t);
extern void RTreePrint(node_t);
extern rect_t RectInit (void);
struct Partition
{
branch_t buffer[MAXCARD+1];
int n;
rect_t cover_all;
rect_t cover[2];
};
typedef struct Partition partition_t;
#endif /* _RTREE_ */

View File

@ -1,179 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <YapInterface.h>
#include "Yap.h"
#include "rtree.h"
#include "clause_list.h"
#include "rtree_udi_i.h"
#include "rtree_udi.h"
static int YAP_IsNumberTermToFloat (Term term, YAP_Float *n)
{
if (YAP_IsIntTerm (term) != FALSE)
{
if (n != NULL)
*n = (YAP_Float) YAP_IntOfTerm (term);
return (TRUE);
}
if (YAP_IsFloatTerm (term) != FALSE)
{
if (n != NULL)
*n = YAP_FloatOfTerm (term);
return (TRUE);
}
return (FALSE);
}
static rect_t RectOfTerm (Term term)
{
YAP_Term tmp;
rect_t rect;
int i;
if (!YAP_IsPairTerm(term))
return (RectInit());
for (i = 0; YAP_IsPairTerm(term) && i < 4; i++)
{
tmp = YAP_HeadOfTerm (term);
if (!YAP_IsNumberTermToFloat(tmp,&(rect.coords[i])))
return (RectInit());
term = YAP_TailOfTerm (term);
}
return (rect);
}
control_t *RtreeUdiInit (Term spec,
void * pred,
int arity){
control_t *control;
YAP_Term arg;
int i, c;
/* YAP_Term mod; */
/* spec = Yap_StripModule(spec, &mod); */
if (! YAP_IsApplTerm(spec))
return (NULL);
control = (control_t *) malloc (sizeof(*control));
assert(control);
memset((void *) control,0, sizeof(*control));
c = 0;
for (i = 1; i <= arity; i ++)
{
arg = YAP_ArgOfTerm(i,spec);
if (YAP_IsAtomTerm(arg)
&& strcmp("+",YAP_AtomName(YAP_AtomOfTerm(arg))) == 0)
{
(*control)[c].pred = pred;
(*control)[c++].arg = i;
}
}
/* for (i = 0; i < NARGS; i++)
printf("%d,%p\t",(*control)[i].arg,(*control)[i].tree);
printf("\n"); */
return control;
}
control_t *RtreeUdiInsert (Term term,control_t *control,void *clausule)
{
int i;
rect_t r;
assert(control);
for (i = 0; i < NARGS && (*control)[i].arg != 0 ; i++)
{
r = RectOfTerm(YAP_ArgOfTerm((*control)[i].arg,term));
if (!(*control)[i].tree)
(*control)[i].tree = RTreeNew();
RTreeInsert(&(*control)[i].tree,r,clausule);
}
/* printf("insert %p\n", clausule); */
return (control);
}
static int callback(rect_t r, void *data, void *arg)
{
callback_m_t x;
x = (callback_m_t) arg;
return Yap_ClauseListExtend(x->cl,data,x->pred);
}
/*ARGS ARE AVAILABLE*/
void *RtreeUdiSearch (control_t *control)
{
rect_t r;
int i;
struct ClauseList clauselist;
struct CallbackM cm;
callback_m_t c;
YAP_Term Constraints;
/*RTreePrint ((*control)[0].tree);*/
for (i = 0; i < NARGS && (*control)[i].arg != 0 ; i++) {
YAP_Term t = YAP_A((*control)[i].arg);
if (YAP_IsAttVar(t))
{
fprintf(stderr,"i=%ld\n",i);
/*get the constraits rect*/
Constraints = YAP_AttsOfVar(t);
/* Yap_DebugPlWrite(Constraints); */
r = RectOfTerm(YAP_ArgOfTerm(2,Constraints));
c = &cm;
c->cl = Yap_ClauseListInit(&clauselist);
c->pred = (*control)[i].pred;
if (!c->cl)
return NULL; /*? or fail*/
RTreeSearch((*control)[i].tree, r, callback, c);
Yap_ClauseListClose(c->cl);
if (Yap_ClauseListCount(c->cl) == 0)
{
Yap_ClauseListDestroy(c->cl);
return Yap_FAILCODE();
}
if (Yap_ClauseListCount(c->cl) == 1)
{
return Yap_ClauseListToClause(c->cl);
}
return Yap_ClauseListCode(c->cl);
}
}
return NULL; /*YAP FALLBACK*/
}
int RtreeUdiDestroy(control_t *control)
{
int i;
assert(control);
for (i = 0; i < NARGS && (*control)[i].arg != 0; i++)
{
if ((*control)[i].tree)
RTreeDestroy((*control)[i].tree);
}
free(control);
control = NULL;
return TRUE;
}

View File

@ -1,20 +0,0 @@
#ifndef _RTREE_UDI_I_
#define _RTREE_UDI_I_
#define NARGS 5
struct Control
{
int arg;
void *pred;
rtree_t tree;
};
typedef struct Control control_t[NARGS];
struct CallbackM
{
clause_list_t cl;
void * pred;
};
typedef struct CallbackM * callback_m_t;
#endif /* _RTREE_UDI_I_ */

View File

@ -9,7 +9,7 @@
**************************************************************************
* *
* File: udi.yap *
* Last rev: 8/2/88 *
* Last rev: 17/12/2012 *
* mods: *
* comments: support user defined indexing *
* *
@ -22,5 +22,4 @@
******************/
udi(Pred) :-
'$udi_init'(rtree, Pred).
'$udi_init'(Pred).